

1

IITM GROUP OF INSTITUTIONS, MURTHAL

SONIPAT

DEPARTMENT:BACHELOR OF COMPUTER AND APPLICATION

SUBJECT NAME: JAVA PROGRAMMING (BCA-304B)

UNIT : 1 JAVA LANGUAGE BASICS

JAVA:

Java is a general-purpose, concurrent, object-oriented, class-based, and the runtime
environment(JRE) which consists of JVM which is the cornerstone of the Java
platform. This blog on What is Java will clear all your doubts about why to learn
java, features and how it works.

In this What is Java blog, I would be covering following topics:

 What is Java used for?
 History of Java
 What is Java?
 Features of Java
 Components in Java

What is Java used for?

Before I answer the question, what is Java used for, let me brief you about why you
should choose Java. Java is highly popular and has dominated this field from early
2000‘s till the present 2018.

Java has been used in different domains. Some of them are listed below:

 Banking: To deal with transaction management.
 Retail: Billing applications that you see in a store/restaurant are completely

written in Java.
 Information Technology: Java is designed to solve implementation

dependencies.
 Android: Applications are either written in Java or use Java API.
 Financial services: It is used in server-side applications.
 Stock market: To write algorithms as to which company they should invest

in.
 Big Data: Hadoop MapReduce framework is written using Java.
 Scientific and Research Community: To deal with huge amount of data.

Wait! Java can do more.

https://www.edureka.co/blog/what-is-java/#WhatisJavausedfor?
https://www.edureka.co/blog/what-is-java/#HistoryofJava
https://www.edureka.co/blog/what-is-java/#WhatisJava?
https://www.edureka.co/blog/what-is-java/#FeaturesofJava
https://www.edureka.co/blog/what-is-java/#ComponentsinJava

2

Let‘s see how some of the technologies make use of Java as an essential core of
their functionalities.

Let‘s see how some of the technologies make use of Java as an essential core of
their functionalities.

You can see in the above image, Java is an ocean of opportunities.

Let us see a brief history of Java.

History of Java

Java is a programming language developed by James Gosling with other team
members named Mike Sheridan and Patrick Naughton also called as Green
Team in 1995 for Sun Microsystems for digital devices such as set-top boxes,
televisions etc. Now, let us see in detail what is Java.

What is Java?

3

It is an object-oriented language similar to C++, but with advanced and simplified
features. Java is free to access and can run on all platforms.

Java is: –

 Concurrent where you can execute many statements instead of
sequentially executing it.

 Class-based and an object-oriented programming language.
 Independent programming language that follows the logic of ―Write once,

Run anywhere‖ i.e. the compiled code can run on all platforms which
supports java.

In simple words, it is a computing platform where you can develop applications.

You may go through this Java recording where our Java Certification
Training expert has explained the topics in a detailed manner with examples which
will help you to understand the concepts better.

Features of Java

Simple: Java has made life easier by removing all the complexities
such as pointers, operator overloading as you see in C++ or any other programming
language.

Portable: Java is platform independent which means that any application written on
one platform can be easily ported to another platform.

https://www.edureka.co/java-j2ee-training-course
https://www.edureka.co/java-j2ee-training-course

4

Object-oriented: Everything is considered to be an ―object‖ which
possess some state, behavior and all the operations are performed using these
objects.

Secured: All the code is converted in bytecode after compilation,
which is not readable by a human. and java does not use an explicit pointer and run
the programs inside the sandbox to prevent any activities from untrusted sources. It
enables to develop virus-free, tamper-free systems/applications.

Dynamic: It has the ability to adapt to an evolving environment
which supports dynamic memory allocation due to which memory wastage is
reduced and performance of the application is increased.

Distributed: Java provides a feature which helps to create
distributed applications. Using Remote Method Invocation (RMI), a program can
invoke a method of another program across a network and get the output. You can
access files by calling the methods from any machine on the internet.

Robust: Java has a strong memory management system. It helps in
eliminating error as it checks the code during compile and runtime.

5

High Performance: Java achieves high performance through the use of bytecode
which can be easily translated into native machine code. With the use of JIT (Just-In-
Time) compilers, Java enables high performance.

Interpreted: Java is compiled to bytecodes, which are interpreted
by a Java run-time environment.

Multithreaded: Java supports multiple threads of execution
(a.k.a., lightweight processes), including a set of synchronization primitives. This
makes programming with threads much easier.

Components in Java

JVM (Java Virtual Machine)

It is an abstract machine. It is a specification that provides a run-time environment in
which Java bytecode can be executed. It follows three notations:

 Specification: It is a document that describes the implementation of the
Java virtual machine. It is provided by Sun and other companies.

 Implementation: It is a program that meets the requirements of
JVM specification.

 Runtime Instance: An instance of JVM is created whenever you write a
java command on the command prompt and run the class.

JRE (Java Runtime Environment)

JRE refers to a runtime environment in which Java bytecode can be executed. It
implements the JVM (Java Virtual Machine) and provides all the class libraries and
other support files that JVM uses at runtime. So JRE is a software package that
contains what is required to run a Java program. Basically, it‘s an implementation of
the JVM which physically exists.

JDK(Java Development Kit)

It is the tool necessary to:-

6

 Compile
 Document
 Package Java programs.

The JDK completely includes JRE which contains tools for Java programmers. The
Java Development Kit is provided free of charge. Along with JRE, it includes an
interpreter/loader, a compiler (javac), an archiver (jar), a documentation generator
(Javadoc) and other tools needed in Java development. In short, it contains JRE +
development tools.

What is Class?

A class is an entity that determines how an object will behave and what the
object will contain. In other words, it is a blueprint or a set of instruction to
build a specific type of object.

Syntax

class <class_name>{

 field;

 method;

 }

What is an Object?

An object is nothing but a self-contained component which consists of
methods and properties to make a particular type of data useful. Object
determines the behavior of the class. When you send a message to an
object, you are asking the object to invoke or execute one of its methods.

7

From a programming point of view, an object can be a data structure, a
variable or a function. It has a memory location allocated. The object is
designed as class hierarchies.

Syntax

ClassName ReferenceVariable = new ClassName();

What is the Difference Between Object & Class?

A class is a blueprint or prototype that defines the variables and the
methods (functions) common to all objects of a certain kind.

An object is a specimen of a class. Software objects are often used to
model real-world objects you find in everyday life.

What is Class?

A class is an entity that determines how an object will behave and what the
object will contain. In other words, it is a blueprint or a set of instruction to
build a specific type of object.

Syntax

class <class_name>{

 field;

 method;

 }

What is an Object?

An object is nothing but a self-contained component which consists of
methods and properties to make a particular type of data useful. Object
determines the behavior of the class. When you send a message to an
object, you are asking the object to invoke or execute one of its methods.

From a programming point of view, an object can be a data structure, a
variable or a function. It has a memory location allocated. The object is
designed as class hierarchies.

Syntax

ClassName ReferenceVariable = new ClassName();

What is the Difference Between Object & Class?

8

A class is a blueprint or prototype that defines the variables and the
methods (functions) common to all objects of a certain kind.

An object is a specimen of a class. Software objects are often used to
model real-world objects you find in everyday life.

Understand the concept of Java Classes and
Objects with an example.

Let's take an example of developing a pet management system, specially
meant for dogs. You will need various information about the dogs like
different breeds of the dogs, the age, size, etc.

You need to model real-life beings, i.e., dogs into software entities.

 Class - Dogs
 Data members or objects- size, age, color, breed, etc.
 Methods- eat, sleep, sit and run.
 Class - Dogs
 Data members or objects- size, age, color, breed, etc.
 Methods- eat, sleep, sit and run.

9

Now, for different values of data members (breed size, age, and color) in
Java class, you will get different dog objects.

https://www.guru99.com/images/java/052016_0704_ObjectsandC5.jpg

10

You can design any program using this OOPs approach.

While creating a class, one must follow the following principles.

 Single Responsibility Principle (SRP)- A class should have only
one reason to change

 Open Closed Responsibility (OCP)- It should be able to extend any
classes without modifying it

 Liskov Substitution Responsibility (LSR)- Derived classes must
be substitutable for their base classes

 Dependency Inversion Principle (DIP)- Depend on abstraction and
not on concretions

 Interface Segregation Principle (ISP)- Prepare fine grained
interfaces that are client specific.

Example Code: Class and Object

// Class Declaration

public class Dog {

 // Instance Variables

 String breed;

 String size;

 int age;

 String color;

 // method 1

https://www.guru99.com/images/java/052016_0704_ObjectsandC6.jpg

11

 public String getInfo() {

 return ("Breed is: "+breed+" Size is:"+size+" Age is:"+age+" color is: "+c

olor);

 }

 public static void main(String[] args) {

 Dog maltese = new Dog();

 maltese.breed="Maltese";

 maltese.size="Small";

 maltese.age=2;

 maltese.color="white";

 System.out.println(maltese.getInfo());

 }

}

Output:
Breed is: Maltese Size is:Small Age is:2 color is: white

Object and Class Example: main outside class

In previous program, we are creating main() method inside the class. Now,
we create classes and define main() method in another class. This is a
better way than previous one.

// Class Declaration

class Dog {

 // Instance Variables

 String breed;

 String size;

 int age;

 String color;

 // method 1

 public String getInfo() {

 return ("Breed is: "+breed+" Size is:"+size+" Age is:"+age+" color is: "+c

olor);

 }

}

public class Execute{

 public static void main(String[] args) {

 Dog maltese = new Dog();

 maltese.breed="Maltese";

 maltese.size="Small";

 maltese.age=2;

 maltese.color="white";

12

 System.out.println(maltese.getInfo());

 }

}

Output:

Breed is: Maltese Size is:Small Age is:2 color is: white

Summary:

 Java Class is an entity that determines how an object will behave and
what the object will contain

 A Java object is a self-contained component which consists of
methods and properties to make certain type of data useful

 A class system allows the program to define a new class (derived
class) in terms of an existing class (superclass) by using a technique
like inheritance, overriding and augmenting.

 What is Constructor in Java?

A constructor is a special method that is used to initialize a newly created
object and is called just after the memory is allocated for the object. It can
be used to initialize the objects to desired values or default values at the
time of object creation. It is not mandatory for the coder to write a
constructor for a class.

If no user-defined constructor is provided for a class, compiler initializes
member variables to its default values.

 numeric data types are set to 0
 char data types are set to null character(‗\0‘)
 reference variables are set to null

Rules for creating a Java Constructor

1. It has the same name as the class
2. It should not return a value not even void

Example 1: Create your First Constructor Java

Step 1) Type following code in your editor.

class Demo{

13

 int value1;

 int value2;

 Demo(){

 value1 = 10;

 value2 = 20;

 System.out.println("Inside Constructor");

 }

 public void display(){

 System.out.println("Value1 === "+value1);

 System.out.println("Value2 === "+value2);

 }

 public static void main(String args[]){

 Demo d1 = new Demo();

 d1.display();

 }

}

Step 2) Save , Run & Compile the code. Observe the output.

Output:

Inside Constructor

Value1 === 10

Value2 === 20

Constructor Overloading

Constructor overloading is a technique in Java in which a class can have
any number of constructors that differ in parameter list. The compiler
differentiates these constructors by taking into account the number of
parameters in the list and their type.

Examples of valid constructors for class Account are

Account(int a);

Account (int a,int b);

Account (String a,int b);

Example 2: To understand Constructor Overloading

Step 1) Type the code in the editor.

class Demo{

 int value1;

14

 int value2;

 /*Demo(){

 value1 = 10;

 value2 = 20;

 System.out.println("Inside 1st Constructor");

 }*/

 Demo(int a){

 value1 = a;

 System.out.println("Inside 2nd Constructor");

 }

 Demo(int a,int b){

 value1 = a;

 value2 = b;

 System.out.println("Inside 3rd Constructor");

 }

 public void display(){

 System.out.println("Value1 === "+value1);

 System.out.println("Value2 === "+value2);

 }

 public static void main(String args[]){

 Demo d1 = new Demo();

 Demo d2 = new Demo(30);

 Demo d3 = new Demo(30,40);

 d1.display();

 d2.display();

 d3.display();

 }

}

Step 2) Save, Compile & Run the Code.

Step 3) Error = ?. Try and debug the error before proceeding to next step.

Step 4) Every class has a default Constructor. Default Constructor
for class Demo is Demo(). In case you do not provide this constructor the
compiler creates it for you and initializes the variables to default values.
You may choose to override this default constructor and initialize variables
to your desired values as shown in Example 1.

But if you specify a parametrized constructor like Demo(int a), and
want to use the default constructor Demo(), it is mandatory for you to
specify it.

In other words, in case your Constructor is overridden, and you want
to use the default constructor, its need to be specified.

15

Step 5) Uncomment line # 4-8. Save, Compile & Run the code.

Constructor Chaining

Consider a scenario where a base class is extended by a child. Whenever
an object of the child class is created, the constructor of the parent class is
invoked first. This is called Constructor chaining.

Example 3: To understand constructor chaining

Step 1) Copy the following code into the editor.

class Demo{

 int value1;

 int value2;

 Demo(){

 value1 = 1;

 value2 = 2;

 System.out.println("Inside 1st Parent Constructor");

 }

 Demo(int a){

 value1 = a;

 System.out.println("Inside 2nd Parent Constructor");

 }

 public void display(){

 System.out.println("Value1 === "+value1);

 System.out.println("Value2 === "+value2);

 }

 public static void main(String args[]){

 DemoChild d1 = new DemoChild();

 d1.display();

 }

}

class DemoChild extends Demo{

 int value3;

 int value4;

 DemoChild(){

 //super(5);

 value3 = 3;

 value4 = 4;

 System.out.println("Inside the Constructor of Child");

 }

 public void display(){

 System.out.println("Value1 === "+value1);

 System.out.println("Value2 === "+value2);

 System.out.println("Value1 === "+value3);

16

 System.out.println("Value2 === "+value4);

 }

}

Step 2) Run the Code. Owing to constructor chaining, when the object of
child class DemoChild is created, constructor Demo() of the parent class is
invoked first and later constructor DemoChild() of the child is created.
Expected Output =

Inside 1st Parent Constructor

Inside the Constructor of Child

Value1 === 1

Value2 === 2

Value1 === 3

Value2 === 4

Step 3) You may observe the constructor of the parent class Demo is
overridden. What if you want to call the overridden constructor Demo(int a)
instead of the default constructor Demo() when your child object is
created?

In such cases, you can use the keyword "super" to call overridden
constructors of the parent class.

Syntax:-

super();

--or--

super(parameter list);

Example: If your constructor is like Demo(String Name,int a) you will
specify super("Java",5) If used, the keyword super needs to be the first
line of code in the constructor of the child class.

Step 4) Uncomment Line # 26 and run the code. Observe the Output.

Output:

Inside 2nd Parent Constructor

Inside the Constructor of Child

Value1 === 5

Value2 === 0

Value1 === 3

Value2 === 4

17

UNIT:2 (INHERITANCE AND POLYMORPHISM)

What is Inheritance?

Inheritance is a mechanism in which one class acquires the property of
another class. For example, a child inherits the traits of his/her parents.
With inheritance, we can reuse the fields and methods of the existing class.
Hence, inheritance facilitates Reusability and is an important concept of
OOPs.

Types of Inheritance

There are Various types of inheritance in Java:

Single Inheritance:

In Single Inheritance one class extends another class (one class only).

Single Inheritance

In above diagram, Class B extends only Class A. Class A is a super class
and Class B is a Sub-class.

Multiple Inheritance:

In Multiple Inheritance, one class extending more than one class. Java
does not support multiple inheritance.

Multiple Inheritance

https://www.guru99.com/images/java/single_inheritance.png
https://www.guru99.com/images/java/multiple.png

18

As per above diagram, Class C extends Class A and Class B both.

Multilevel Inheritance:

In Multilevel Inheritance, one class can inherit from a derived class. Hence,
the derived class becomes the base class for the new class.

Multilevel Inheritance

As per shown in diagram Class C is subclass of B and B is a of subclass
Class A.

Hierarchical Inheritance:

In Hierarchical Inheritance, one class is inherited by many sub classes.

Hierarchical Inheritance

As per above example, Class B, C, and D inherit the same class A.

https://www.guru99.com/images/java/multilevel.png
https://www.guru99.com/images/java/hierarchy.png

19

Hybrid Inheritance:

Hybrid inheritance is a combination of Single and Multiple inheritance.

Hybrid
Inheritance

As per above example, all the public and protected members of Class A
are inherited into Class D, first via Class B and secondly via Class C.

Note: Java doesn't support hybrid/Multiple inheritence

Inheritance in Java

Java Inheritance is a mechanism in which one class acquires the property
of another class. In Java, when an "Is-A" relationship exists between two
classes, we use Inheritance. The parent class called a super class and the
inherited class called as a sub class. The keyword extends is used by the
sub class to inherit the features of super class. Inheritance is important
since it leads to the reusability of code.

Java Inheritance Syntax:

class subClass extends superClass

{

 //methods and fields

}

Java Inheritance Example

https://www.guru99.com/images/java/hybrid.jpeg

20

class Doctor {

 void Doctor_Details() {

 System.out.println("Doctor Details...");

 }

}

class Surgeon extends Doctor {

 void Surgeon_Details() {

 System.out.println("Surgen Detail...");

 }

}

public class Hospital {

 public static void main(String args[]) {

 Surgeon s = new Surgeon();

 s.Doctor_Details();

 s.Surgeon_Details();

 }

}

Super Keyword

The super keyword is similar to "this" keyword.

The keyword super can be used to access any data member or methods of
the parent class.

Super keyword can be used at variable, method and constructor level.

Syntax:

super.<method-name>();

Learn Inheritance in OOP’s with Example

Consider the same banking application from the PREVIOUS EXAMPLE.

https://www.guru99.com/images/uploads/2012/07/java-inheritance.jpg

21

We are supposed to open two different account types, one for saving and
another for checking (also known as current).

Let's compare and study how we can approach coding from a structured
and object-oriented programming perspective. Structural approach: In
structured programming, we will create two functions –

1. One to withdraw
2. And the other for deposit action.

Since the working of these functions remains same across the accounts.

OOP's approach: While using the OOPs programming approach. We
would create two classes.

 Each having implementation of the deposit and withdraw functions.
 This will redundant extra work.

https://www.guru99.com/images/java/052016_0651_JavaInherit1.jpg
https://www.guru99.com/images/java/052016_0651_JavaInherit2.jpg

22

Change Request in Software

Now there is a change in the requirement specification for something that is
so common in the software industry. You are supposed to add functionality
privileged Banking Account with Overdraft Facility. For a background,
overdraft is a facility where you can withdraw an amount more than
available the balance in your account.

Structural approach: Using functional approach, I have to modify my
withdraw function, which is already tested and baselined. And add a
method like below will take care of new requirements.

https://www.guru99.com/images/java/052016_0651_JavaInherit3.jpg
https://www.guru99.com/images/java/052016_0651_JavaInherit4.jpg

23

OOP's approach: Using OOP's approach, you just need to write a new
class with unique implementation of withdraw function. We never touched
the tested piece of code.

Another Change Request

What if the requirement changes further? Like to add credit card account
with its own unique requirement of deposits.

https://www.guru99.com/images/java/052016_0651_JavaInherit5.jpg
https://www.guru99.com/images/java/052016_0651_JavaInherit6.jpg

24

Structural approach: Using structural approach you have to change
tested piece of deposit code again.

OOP's approach: But using object-oriented approach, you will just create a
new class with its unique implementation of deposit method (highlighted
red in the image below).

So even though the structural programming seems like an easy approach
initially, OOP's wins in a long term.

https://www.guru99.com/images/java/052016_0651_JavaInherit7.jpg
https://www.guru99.com/images/java/052016_0651_JavaInherit8.jpg

25

Advantage of Inheritance in OOPs

But one may argue that across all classes, you have a repeated pieces of
code.

To overcome this, you create a parent class, say "account" and implement
the same function of deposit and withdraw. And make child classes
inherited "account" class. So that they will have access to withdraw and
deposit functions in account class.

The functions are not required to be implemented individually. This
is Inheritance in java. .

https://www.guru99.com/images/java/052016_0651_JavaInherit9.jpg
https://www.guru99.com/images/java/052016_0651_JavaInherit10.jpg

26

Overloading vs Overriding in Java

1. Overloading happens at compile-time while Overriding happens
at runtime: The binding of overloaded method call to its definition has
happens at compile-time however binding of overridden method call to its
definition happens at runtime.

2. Static methods can be overloaded which means a class can have more
than one static method of same name. Static methods cannot be
overridden, even if you declare a same static method in child class it has
nothing to do with the same method of parent class.

3. The most basic difference is that overloading is being done in the same
class while for overriding base and child classes are required. Overriding
is all about giving a specific implementation to the inherited method of
parent class.

4. Static binding is being used for overloaded methods and dynamic
binding is being used for overridden/overriding methods.

5. Performance: Overloading gives better performance compared to
overriding. The reason is that the binding of overridden methods is being
done at runtime.

6. private and final methods can be overloaded but they cannot be
overridden. It means a class can have more than one private/final
methods of same name but a child class cannot override the private/final
methods of their base class.

7. Return type of method does not matter in case of method overloading, it
can be same or different. However in case of method overriding the
overriding method can have more specific return type (refer this).

8. Argument list should be different while doing method overloading.
Argument list should be same in method Overriding.

https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/
https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/
https://beginnersbook.com/2013/04/java-static-dynamic-binding/
https://beginnersbook.com/2013/04/java-static-dynamic-binding/
https://beginnersbook.com/2013/04/java-static-dynamic-binding/
https://stackoverflow.com/questions/14694852/can-overridden-methods-differ-in-return-type
https://www.guru99.com/images/java/052016_0651_JavaInherit11.jpg

27

Overloading example

//A class for adding upto 5 numbers
class Sum
{
 int add(int n1, int n2)
 {
 return n1+n2;
 }
 int add(int n1, int n2, int n3)
 {
 return n1+n2+n3;
 }
 int add(int n1, int n2, int n3, int n4)
 {
 return n1+n2+n3+n4;
 }
 int add(int n1, int n2, int n3, int n4, int n5)
 {
 return n1+n2+n3+n4+n5;
 }
 public static void main(String args[])
 {
 Sum obj = new Sum();
 System.out.println("Sum of two numbers: "+obj.add(20, 21));
 System.out.println("Sum of three numbers: "+obj.add(20, 21, 22));
 System.out.println("Sum of four numbers: "+obj.add(20, 21, 22, 23));
 System.out.println("Sum of five numbers: "+obj.add(20, 21, 22, 23, 24));
 }
}

Output:

Sum of two numbers: 41
Sum of three numbers: 63
Sum of four numbers: 86
Sum of five numbers: 110

Here we have 4 versions of same method add. We are overloading the
method add() here.

Overriding example

package beginnersbook.com;
class CarClass
{
 public int speedLimit()
 {
 return 100;
 }
}
class Ford extends CarClass
{
 public int speedLimit()
 {
 return 150;
 }
 public static void main(String args[])

28

 {
 CarClass obj = new Ford();
 int num= obj.speedLimit();
 System.out.println("Speed Limit is: "+num);
 }
}

OUTPUT:

peed Limit is: 150

Here speedLimit() method of class Ford is overriding the speedLimit() method of
class CarClass.

Polymorphism in Java with example

Polymorphism is one of the OOPs feature that allows us to perform a single
action in different ways. For example, lets say we have a class Animal that has
a method sound(). Since this is a generic class so we can‘t give it a
implementation like: Roar, Meow, Oink etc. We had to give a generic
message.

public class Animal{
 ...
 public void sound(){
 System.out.println("Animal is making a sound");
 }
}

Now lets say we two subclasses of Animal class: Horse and Cat that extends
(see Inheritance) Animal class. We can provide the implementation to the same
method like this:

public class Horse extends Animal{
...
 @Override
 public void sound(){
 System.out.println("Neigh");
 }
}

and

public class Cat extends Animal{
...
 @Override
 public void sound(){
 System.out.println("Meow");
 }
}

As you can see that although we had the common action for all
subclasses sound() but there were different ways to do the same action. This is
a perfect example of polymorphism (feature that allows us to perform a single

https://beginnersbook.com/2013/04/oops-concepts/
https://beginnersbook.com/2013/03/inheritance-in-java/

29

action in different ways). It would not make any sense to just call the generic
sound() method as each Animal has a different sound. Thus we can say that
the action this method performs is based on the type of object.

What is polymorphism in programming?

Polymorphism is the capability of a method to do different things based on the
object that it is acting upon. In other words, polymorphism allows you define
one interface and have multiple implementations. As we have seen in the
above example that we have defined the method sound() and have the
multiple implementations of it in the different-2 sub classes.
Which sound() method will be called is determined at runtime so the example
we gave above is a runtime polymorphism example.

Types of polymorphism and method overloading & overriding are covered in
the separate tutorials. You can refer them here:
1. Method Overloading in Java – This is an example of compile time (or static
polymorphism)
2. Method Overriding in Java – This is an example of runtime time (or dynamic
polymorphism)
3. Types of Polymorphism – Runtime and compile time – This is our next
tutorial where we have covered the types of polymorphism in detail. I would
recommend you to go though method overloading and overriding before going
though this topic.

Lets write down the complete code of it:

Example 1: Polymorphism in Java

Runtime Polymorphism example:
Animal.java

public class Animal{
 public void sound(){
 System.out.println("Animal is making a sound");
 }
}

Horse.java

class Horse extends Animal{
 @Override
 public void sound(){
 System.out.println("Neigh");
 }
 public static void main(String args[]){
 Animal obj = new Horse();
 obj.sound();

https://beginnersbook.com/2013/05/method-overloading/
https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/
https://beginnersbook.com/2013/04/runtime-compile-time-polymorphism/

30

 }
}

Output:

Neigh

Cat.java

public class Cat extends Animal{
 @Override
 public void sound(){
 System.out.println("Meow");
 }
 public static void main(String args[]){
 Animal obj = new Cat();
 obj.sound();
 }
}

Output:

Meow

Example 2: Compile time Polymorphism

Method Overloading on the other hand is a compile time polymorphism
example.

class Overload
{
 void demo (int a)
 {
 System.out.println ("a: " + a);
 }
 void demo (int a, int b)
 {
 System.out.println ("a and b: " + a + "," + b);
 }
 double demo(double a) {
 System.out.println("double a: " + a);
 return a*a;
 }
}
class MethodOverloading
{
 public static void main (String args [])
 {
 Overload Obj = new Overload();
 double result;
 Obj .demo(10);
 Obj .demo(10, 20);
 result = Obj .demo(5.5);
 System.out.println("O/P : " + result);
 }
}

Here the method demo() is overloaded 3 times: first method has 1 int
parameter, second method has 2 int parameters and third one is having

31

double parameter. Which method is to be called is determined by the
arguments we pass while calling methods. This happens at runtime compile
time so this type of polymorphism is known as compile time polymorphism.

Output:

a: 10
a and b: 10,20
double a: 5.5
O/P : 30.25

Types of polymorphism in java- Runtime

and Compile time polymorphism

In the last tutorial we discussed Polymorphism in Java. In this guide we will
see types of polymorphism. There are two types of polymorphism in java:
1) Static Polymorphism also known as compile time polymorphism
2) Dynamic Polymorphism also known as runtime polymorphism

Compile time Polymorphism (or Static
polymorphism)

Polymorphism that is resolved during compiler time is known as static
polymorphism. Method overloading is an example of compile time
polymorphism.
Method Overloading: This allows us to have more than one method having
the same name, if the parameters of methods are different in number,
sequence and data types of parameters. We have already discussed Method
overloading here: If you didn‘t read that guide, refer: Method Overloading in
Java

Example of static Polymorphism

Method overloading is one of the way java supports static polymorphism. Here
we have two definitions of the same method add() which add method would
be called is determined by the parameter list at the compile time. That is the
reason this is also known as compile time polymorphism.

class SimpleCalculator
{
 int add(int a, int b)
 {

https://beginnersbook.com/2013/03/polymorphism-in-java/
https://beginnersbook.com/2013/05/method-overloading/
https://beginnersbook.com/2013/05/method-overloading/

32

 return a+b;
 }
 int add(int a, int b, int c)
 {
 return a+b+c;
 }
}
public class Demo
{
 public static void main(String args[])
 {
 SimpleCalculator obj = new SimpleCalculator();
 System.out.println(obj.add(10, 20));
 System.out.println(obj.add(10, 20, 30));
 }
}

Output:

30
60

Runtime Polymorphism (or Dynamic
polymorphism)

It is also known as Dynamic Method Dispatch. Dynamic polymorphism is a
process in which a call to an overridden method is resolved at runtime, thats
why it is called runtime polymorphism. I have already discussed method
overriding in detail in a separate tutorial, refer it: Method Overriding in Java.

Example
In this example we have two classes ABC and XYZ. ABC is a parent class
and XYZ is a child class. The child class is overriding the method myMethod()
of parent class. In this example we have child class object assigned to the
parent class reference so in order to determine which method would be called,
the type of the object would be determined at run-time. It is the type of object
that determines which version of the method would be called (not the type of
reference).

To understand the concept of overriding, you should have the basic
knowledge of inheritance in Java.

class ABC{
 public void myMethod(){
 System.out.println("Overridden Method");
 }
}
public class XYZ extends ABC{

 public void myMethod(){
 System.out.println("Overriding Method");
 }

https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/
https://beginnersbook.com/2013/03/inheritance-in-java/

33

 public static void main(String args[]){
 ABC obj = new XYZ();
 obj.myMethod();
 }
}

Output:

Overriding Method

When an overridden method is called through a reference of parent class,
then type of the object determines which method is to be executed. Thus, this
determination is made at run time.
Since both the classes, child class and parent class have the same
method animalSound. Which version of the method(child class or parent class)
will be called is determined at runtime by JVM.

Few more overriding examples:

ABC obj = new ABC();
obj.myMethod();
// This would call the myMethod() of parent class ABC

XYZ obj = new XYZ();
obj.myMethod();
// This would call the myMethod() of child class XYZ

ABC obj = new XYZ();
obj.myMethod();
// This would call the myMethod() of child class XYZ

In the third case the method of child class is to be executed because which
method is to be executed is determined by the type of object and since the
object belongs to the child class, the child class version of myMethod() is
called.

Java - Packages
Packages are used in Java in order to prevent naming conflicts, to control access,
to make searching/locating and usage of classes, interfaces, enumerations and
annotations easier, etc.

A Package can be defined as a grouping of related types (classes, interfaces,
enumerations and annotations) providing access protection and namespace
management.

Some of the existing packages in Java are −

 java.lang − bundles the fundamental classes

 java.io − classes for input , output functions are bundled in this package

Programmers can define their own packages to bundle group of classes/interfaces,
etc. It is a good practice to group related classes implemented by you so that a

34

programmer can easily determine that the classes, interfaces, enumerations, and
annotations are related.

Since the package creates a new namespace there won't be any name conflicts
with names in other packages. Using packages, it is easier to provide access
control and it is also easier to locate the related classes.

Creating a Package

While creating a package, you should choose a name for the package and include
a package statement along with that name at the top of every source file that
contains the classes, interfaces, enumerations, and annotation types that you want
to include in the package.

The package statement should be the first line in the source file. There can be only
one package statement in each source file, and it applies to all types in the file.

If a package statement is not used then the class, interfaces, enumerations, and
annotation types will be placed in the current default package.

To compile the Java programs with package statements, you have to use -d option
as shown below.

javac -d Destination_folder file_name.java

Then a folder with the given package name is created in the specified destination,
and the compiled class files will be placed in that folder.

Example

Let us look at an example that creates a package called animals. It is a good
practice to use names of packages with lower case letters to avoid any conflicts with
the names of classes and interfaces.

Following package example contains interface named animals −

/* File name : Animal.java */

package animals;

interface Animal {

 public void eat();

 public void travel();

}

Now, let us implement the above interface in the same package animals −

package animals;

/* File name : MammalInt.java */

public class MammalInt implements Animal {

 public void eat() {

 System.out.println("Mammal eats");

 }

35

 public void travel() {

 System.out.println("Mammal travels");

 }

 public int noOfLegs() {

 return 0;

 }

 public static void main(String args[]) {

 MammalInt m = new MammalInt();

 m.eat();

 m.travel();

 }

}

Now compile the java files as shown below −

$ javac -d . Animal.java

$ javac -d . MammalInt.java

Now a package/folder with the name animals will be created in the current directory
and these class files will be placed in it as shown below.

You can execute the class file within the package and get the result as shown
below.

Mammal eats

Mammal travels

The import Keyword

If a class wants to use another class in the same package, the package name need
not be used. Classes in the same package find each other without any special
syntax.

Example

36

Here, a class named Boss is added to the payroll package that already contains
Employee. The Boss can then refer to the Employee class without using the payroll
prefix, as demonstrated by the following Boss class.

package payroll;

public class Boss {

 public void payEmployee(Employee e) {

 e.mailCheck();

 }

}

What happens if the Employee class is not in the payroll package? The Boss class
must then use one of the following techniques for referring to a class in a different
package.

 The fully qualified name of the class can be used. For example −

payroll.Employee

 The package can be imported using the import keyword and the wild card (*). For
example −

import payroll.*;

 The class itself can be imported using the import keyword. For example −

import payroll.Employee;

Note − A class file can contain any number of import statements. The import
statements must appear after the package statement and before the class
declaration.

The Directory Structure of Packages

Two major results occur when a class is placed in a package −

 The name of the package becomes a part of the name of the class, as we just discussed
in the previous section.

 The name of the package must match the directory structure where the corresponding
bytecode resides.

Here is simple way of managing your files in Java −

Put the source code for a class, interface, enumeration, or annotation type in a text
file whose name is the simple name of the type and whose extension is .java.

For example −

// File Name : Car.java

package vehicle;

public class Car {

 // Class implementation.

}

37

Now, put the source file in a directory whose name reflects the name of the package
to which the class belongs −

....\vehicle\Car.java

Now, the qualified class name and pathname would be as follows −

 Class name → vehicle.Car

 Path name → vehicle\Car.java (in windows)

In general, a company uses its reversed Internet domain name for its package
names.

Example − A company's Internet domain name is apple.com, then all its package
names would start with com.apple. Each component of the package name
corresponds to a subdirectory.

Example − The company had a com.apple.computers package that contained a
Dell.java source file, it would be contained in a series of subdirectories like this −

....\com\apple\computers\Dell.java

At the time of compilation, the compiler creates a different output file for each class,
interface and enumeration defined in it. The base name of the output file is the
name of the type, and its extension is .class.

For example −

// File Name: Dell.java

package com.apple.computers;

public class Dell {

}

class Ups {

}

Now, compile this file as follows using -d option −

$javac -d . Dell.java

The files will be compiled as follows −

.\com\apple\computers\Dell.class

.\com\apple\computers\Ups.class

You can import all the classes or interfaces defined in \com\apple\computers\ as
follows −

import com.apple.computers.*;

Like the .java source files, the compiled .class files should be in a series of
directories that reflect the package name. However, the path to the .class files does
not have to be the same as the path to the .java source files. You can arrange your
source and class directories separately, as −

<path-one>\sources\com\apple\computers\Dell.java

<path-two>\classes\com\apple\computers\Dell.class

38

By doing this, it is possible to give access to the classes directory to other
programmers without revealing your sources. You also need to manage source and
class files in this manner so that the compiler and the Java Virtual Machine (JVM)
can find all the types your program uses.

The full path to the classes directory, <path-two>\classes, is called the class path,
and is set with the CLASSPATH system variable. Both the compiler and the JVM
construct the path to your .class files by adding the package name to the class path.

Say <path-two>\classes is the class path, and the package name is
com.apple.computers, then the compiler and JVM will look for .class files in <path-
two>\classes\com\apple\computers.

A class path may include several paths. Multiple paths should be separated by a
semicolon (Windows) or colon (Unix). By default, the compiler and the JVM search
the current directory and the JAR file containing the Java platform classes so that
these directories are automatically in the class path.

Set CLASSPATH System Variable

To display the current CLASSPATH variable, use the following commands in
Windows and UNIX (Bourne shell) −

 In Windows → C:\> set CLASSPATH

 In UNIX → % echo $CLASSPATH

To delete the current contents of the CLASSPATH variable, use −

 In Windows → C:\> set CLASSPATH =

 In UNIX → % unset CLASSPATH; export CLASSPATH

To set the CLASSPATH variable −

 In Windows → set CLASSPATH = C:\users\jack\java\classes

 In UNIX → % CLASSPATH = /home/jack/java/classes; export CLASSPATH

39

UNIT: 3 (INTERFACES)

 INTERFACE:

An interface is a reference type in Java. It is similar to class. It is a collection of
abstract methods. A class implements an interface, thereby inheriting the abstract
methods of the interface.

Along with abstract methods, an interface may also contain constants, default
methods, static methods, and nested types. Method bodies exist only for default
methods and static methods.

Writing an interface is similar to writing a class. But a class describes the attributes
and behaviors of an object. And an interface contains behaviors that a class
implements.

Unless the class that implements the interface is abstract, all the methods of the
interface need to be defined in the class.

An interface is similar to a class in the following ways −

 An interface can contain any number of methods.

 An interface is written in a file with a .java extension, with the name of the interface
matching the name of the file.

 The byte code of an interface appears in a .class file.

 Interfaces appear in packages, and their corresponding bytecode file must be in a
directory structure that matches the package name.

However, an interface is different from a class in several ways, including −

 You cannot instantiate an interface.

 An interface does not contain any constructors.

 All of the methods in an interface are abstract.

 An interface cannot contain instance fields. The only fields that can appear in an
interface must be declared both static and final.

 An interface is not extended by a class; it is implemented by a class.

 An interface can extend multiple interfaces.

Declaring Interfaces

The interface keyword is used to declare an interface. Here is a simple example to
declare an interface −

Example

Following is an example of an interface −

/* File name : NameOfInterface.java */

import java.lang.*;

// Any number of import statements

40

public interface NameOfInterface {

 // Any number of final, static fields

 // Any number of abstract method declarations\

}

Interfaces have the following properties −

 An interface is implicitly abstract. You do not need to use the abstract keyword while
declaring an interface.

 Each method in an interface is also implicitly abstract, so the abstract keyword is not
needed.

 Methods in an interface are implicitly public.

Example

/* File name : Animal.java */

interface Animal {

 public void eat();

 public void travel();

}

Implementing Interfaces

When a class implements an interface, you can think of the class as signing a
contract, agreeing to perform the specific behaviors of the interface. If a class does
not perform all the behaviors of the interface, the class must declare itself as
abstract.

A class uses the implements keyword to implement an interface. The implements
keyword appears in the class declaration following the extends portion of the
declaration.

Example

/* File name : MammalInt.java */

public class MammalInt implements Animal {

 public void eat() {

 System.out.println("Mammal eats");

 }

 public void travel() {

 System.out.println("Mammal travels");

 }

 public int noOfLegs() {

 return 0;

 }

 public static void main(String args[]) {

 MammalInt m = new MammalInt();

41

 m.eat();

 m.travel();

 }

}

This will produce the following result −

Output

Mammal eats

Mammal travels

When overriding methods defined in interfaces, there are several rules to be
followed −

 Checked exceptions should not be declared on implementation methods other than the
ones declared by the interface method or subclasses of those declared by the interface
method.

 The signature of the interface method and the same return type or subtype should be
maintained when overriding the methods.

 An implementation class itself can be abstract and if so, interface methods need not be
implemented.

When implementation interfaces, there are several rules −

 A class can implement more than one interface at a time.

 A class can extend only one class, but implement many interfaces.

 An interface can extend another interface, in a similar way as a class can extend another
class.

Extending Interfaces

An interface can extend another interface in the same way that a class can extend
another class. The extends keyword is used to extend an interface, and the child
interface inherits the methods of the parent interface.

The following Sports interface is extended by Hockey and Football interfaces.

Example

// Filename: Sports.java

public interface Sports {

 public void setHomeTeam(String name);

 public void setVisitingTeam(String name);

}

// Filename: Football.java

public interface Football extends Sports {

 public void homeTeamScored(int points);

 public void visitingTeamScored(int points);

 public void endOfQuarter(int quarter);

}

42

// Filename: Hockey.java

public interface Hockey extends Sports {

 public void homeGoalScored();

 public void visitingGoalScored();

 public void endOfPeriod(int period);

 public void overtimePeriod(int ot);

}

The Hockey interface has four methods, but it inherits two from Sports; thus, a class
that implements Hockey needs to implement all six methods. Similarly, a class that
implements Football needs to define the three methods from Football and the two
methods from Sports.

Extending Multiple Interfaces

A Java class can only extend one parent class. Multiple inheritance is not allowed.
Interfaces are not classes, however, and an interface can extend more than one
parent interface.

The extends keyword is used once, and the parent interfaces are declared in a
comma-separated list.

For example, if the Hockey interface extended both Sports and Event, it would be
declared as −

Example

public interface Hockey extends Sports, Event

Tagging Interfaces

The most common use of extending interfaces occurs when the parent interface
does not contain any methods. For example, the MouseListener interface in the
java.awt.event package extended java.util.EventListener, which is defined as −

Example

package java.util;

public interface EventListener

{}

An interface with no methods in it is referred to as a tagging interface. There are
two basic design purposes of tagging interfaces −

Creates a common parent − As with the EventListener interface, which is
extended by dozens of other interfaces in the Java API, you can use a tagging
interface to create a common parent among a group of interfaces. For example,
when an interface extends EventListener, the JVM knows that this particular
interface is going to be used in an event delegation scenario.

43

Adds a data type to a class − This situation is where the term, tagging comes
from. A class that implements a tagging interface does not need to define any
methods (since the interface does not have any), but the class becomes an
interface type through polymorphism.

Packages and Interfaces both acts as a container. The content in packages and

interfaces can be used by the classes by importing and implementing it

correspondingly. The basic difference between packages and interfaces is that a

package contains a group of classes and interfaces whereas, an interface contains

methods and fields. Let’s study some other differences with the help of comparison

chart.

Content: Packages Vs Interfaces in Java

1. Comparison Chart

2. Definition

3. Key Differences

4. Conclusion

Comparison Chart

Basic:A package can be imported.

An interface can be extended by another interface and implemented by the class.

Keyword:

Packages are created using "Package" keyword.

Interface are created using "Interface" keyword.

Syntax:

package package_name;

public class class_name{

.

(body of class)

.

}

interface interface_name{

variable declaration;

method declaration;

}

Access:

A package can be imported.

44

An interface can be extended by another interface and implemented by the class.

Access keyword:

Packages can be imported using "import" keyword.

Interfaces can be implemented using "implement" keyword.

Definition of Packages

Packages are collection or groups of the variety of classes and interfaces. The classes

in packages are related to each other in some scope or by inheritance. You can also

create your package and use it for your program.

Creating a package

For creating a package just follow the following steps.

1. Open a file and then declare the name of the package at the top of the file,

like [package package_name;] the package name is the name you want to

give to the package.

2. Next, you define a class that you want to put in the package, and remember

that you declare it public.

3. Save the file as a .java file and then compile the file, then” .class” is obtain

for that file.

4. To create a package for this file the command used is “javac -d .

file_name.java. You can see that the package is created containing a ” .class”

file in the current directory. To place it in parent directory use “javac -d . .

file_name.java” command.

5. You can also create a subpackage by declaring subpackage name as [

package package_name1. package_name2;] at the top of the file.

6. package Mypackage;

7. public class myclass{

8. public void displayMypackage(){

9. system.out.println("method displayMypackage of class myclass of package

Mypackage".

Using the Package

The packages created or available in the directory can be used in the program by

using an import statement.The keyword used to import any package in your program

is “import”. The import statement can be written in two ways, or you can say that

there are two ways to access any package. First, if you want to use a particular class

from a package, The “import” keyword is followed by the package name further

followed by the dot operator and the class name which you want to use from the

package. Second, if you want to use many classes that are contained in the packages,

45

then the import keyword is followed by the package name further followed by the

dot and the ” * ” operator.

1. import package_name . class_name;

2. or

3. import package_name . *;

In above code, you can see the * sign which indicates that second method imports all

the classes contained in the packages.

Now, let’s view the use of the package with an example.

1. import Mypackage . myclass{

2. class TestMypackage{

3. public static void main(string args[]){

4. myclass ob1= new myclass();

5. ob1.displayMypackage();

6. }

7. }

8. //output

9. method displayMypackage of class myclass of package Mypackage.

In above code, the class TestMypackage has imported the package Mypackage and

used its displayMypackage() method.

Definition of Interface

Interface is a kind of a class, but, differs in a sense that the methods declared in the

interface are abstract that means the methods are only declared but not defined. The

fields in the interface are always public, static, final. The fields must be initialized at

the time of declaration. The methods declared by the interface are defined by the

class which implements that interface according to its requirement. As the methods

in the interface do not perform any function, so there is no use of creating any object

of the interface. Hence, no object can be created for the interface.

The interface can also inherit the other interface but, the class inheriting such an

interface must also implement all the methods of the inherited interface. As the fields

are initialized at the time of their declaration in the interface, so there is no need of

constructor in the interface hence, the interface doesn’t contain any constructor. Let’s

see the example of creating and using an interface.

1. interface Area {

2. float pi= 3.14;

3. float find_area(float a, float b){

4. }

5. class Circle implements Area{

6. float find_area(float a, float b){

46

7. return (pi*a*a);

8. }

9. Class Shapes{

10. public static void main(string args[]){

11. Area A=new Area ();

12. Circle C= new circle ();

13. A=C;

14. float F= Area. find_area(10,10);

15. system.out.println("Area of the circle is :" +F);

16. }

In above code, we had created an interface Area, and the class Circle has

implemented the interface Area. The field “pi” has been initialized in the interface at

the time of its declaration. The class Circle has defined the abstract method of the

class area according to its requirement.

Exception Handling in Java: The Exception Handling in Java is

one of the powerful mechanism to handle the runtime errors so that

normal flow of the application can be maintained.

What is Exception in Java

Dictionary Meaning: Exception is an abnormal condition.

 Java, an exception is an event that disrupts the normal flow of the program. It is an
object which is thrown at runtime.

What is Exception Handling : Exception Handling is a mechanism to

handle runtime errors such as ClassNotFoundException, IOException, SQLException,

RemoteException, etc.

Advantage of Exception Handling :The core advantage of exception handling is to

maintain the normal flow of the application. An exception normally disrupts the

normal flow of the application that is why we use exception handling. Let's take a

scenario:

1. statement 1;

2. statement 2;

3. statement 3;

4. statement 4;

5. statement 5;//exception occurs

6. statement 6;

7. statement 7;

8. statement 8;

9. statement 9;

47

10. statement 10; Suppose there are 10 statements in your program and there occurs an

exception at statement 5, the rest of the code will not be executed i.e. statement 6 to 10

will not be executed. If we perform exception handling, the rest of the statement will be

executed. That is why we use exception handling in Java.

o What is the difference between checked and unchecked exceptions?

o What happens behind the code int data=50/0;?

o Why use multiple catch block?

o Is there any possibility when finally block is not executed?

o What is exception propagation?

o What is the difference between throw and throws keyword?

o What are the 4 rules for using exception handling with method overriding?

Hierarchy of Java Exception classes

The java.lang.Throwable class is the root class of Java Exception hierarchy which is

inherited by two subclasses: Exception and Error. A hierarchy of Java Exception classes
are given below:

48

Types of Java Exceptions

There are mainly two types of exceptions: checked and unchecked. Here, an error is

considered as the unchecked exception. According to Oracle, there are three types of
exceptions:

49

1. Checked Exception

2. Unchecked Exception

3. Error

Difference between Checked and Unchecked
Exceptions

1) Checked Exception

The classes which directly inherit Throwable class except RuntimeException and Error are

known as checked exceptions e.g. IOException, SQLException etc. Checked exceptions

are checked at compile-time.

2) Unchecked Exception

The classes which inherit RuntimeException are known as unchecked exceptions e.g.

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc.

Unchecked exceptions are not checked at compile-time, but they are checked at
runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

50

Java Exception Keywords

There are 5 keywords which are used in handling exceptions in Java.

Keyword Description

try The "try" keyword is used to specify a block where we should place

exception code. The try block must be followed by either catch or finally.

It means, we can't use try block alone.

catch The "catch" block is used to handle the exception. It must be preceded

by try block which means we can't use catch block alone. It can be

followed by finally block later.

finally The "finally" block is used to execute the important code of the program.

It is executed whether an exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It doesn't throw an

exception. It specifies that there may occur an exception in the method.

It is always used with method signature.

Java Exception Handling Example

Let's see an example of Java Exception Handling where we using a try-catch statement
to handle the exception.

1. public class JavaExceptionExample{

2. public static void main(String args[]){

3. try{

4. //code that may raise exception

5. int data=100/0;

6. }catch(ArithmeticException e){System.out.println(e);}

7. //rest code of the program

8. System.out.println("rest of the code...");

9. }

10. }

Test it Now

Output:

http://www.javatpoint.com/opr/test.jsp?filename=JavaExceptionExample

51

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code...

In the above example, 100/0 raises an ArithmeticException which is handled by a try-

catch block.

Common Scenarios of Java Exceptions

There are given some scenarios where unchecked exceptions may occur. They are as
follows:

1) A scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

1. int a=50/0;//ArithmeticException

2) A scenario where NullPointerException occurs

If we have a null value in any variable, performing any operation on the variable throws

a NullPointerException.

1. String s=null;

2. System.out.println(s.length());//NullPointerException

3) A scenario where NumberFormatException occurs

The wrong formatting of any value may occur NumberFormatException. Suppose I have

a string variable that has characters, converting this variable into digit will occur
NumberFormatException.

1. String s="abc";

2. int i=Integer.parseInt(s);//NumberFormatException

4) A scenario where ArrayIndexOutOfBoundsException occurs

If you are inserting any value in the wrong index, it would result in
ArrayIndexOutOfBoundsException as shown below:

1. int a[]=new int[5];

2. a[10]=50; //ArrayIndexOutOfBoundsException

Java Exceptions Index

52

1. Java Try-Catch Block

2. Java Multiple Catch Block

3. Java Nested Try

4. Java Finally Block

5. Java Throw Keyword

6. Java Exception Propagation

7. Java Throws Keyword

8. Java Throw vs Throws

9. Java Final vs Finally vs Finalize

10. Java Exception Handling with Method Overriding

11. Java Custom Exceptions

Java - Files and I/O
The java.io package contains nearly every class you might ever need to perform
input and output (I/O) in Java. All these streams represent an input source and an
output destination. The stream in the java.io package supports many data such as
primitives, object, localized characters, etc.

Stream

A stream can be defined as a sequence of data. There are two kinds of Streams −

 InPutStream − The InputStream is used to read data from a source.

 OutPutStream − The OutputStream is used for writing data to a destination.

Java provides strong but flexible support for I/O related to files and networks but this
tutorial covers very basic functionality related to streams and I/O. We will see the
most commonly used examples one by one −

Byte Streams

Java byte streams are used to perform input and output of 8-bit bytes. Though there
are many classes related to byte streams but the most frequently used classes
are, FileInputStream and FileOutputStream. Following is an example which
makes use of these two classes to copy an input file into an output file −

Example

import java.io.*;

public class CopyFile {

https://www.javatpoint.com/try-catch-block
https://www.javatpoint.com/multiple-catch-block-in-java
https://www.javatpoint.com/nested-try-block
https://www.javatpoint.com/finally-block-in-exception-handling
https://www.javatpoint.com/throw-keyword
https://www.javatpoint.com/exception-propagation
https://www.javatpoint.com/throws-keyword-and-difference-between-throw-and-throws
https://www.javatpoint.com/difference-between-throw-and-throws-in-java
https://www.javatpoint.com/difference-between-final-finally-and-finalize
https://www.javatpoint.com/exception-handling-with-method-overriding
https://www.javatpoint.com/custom-exception

53

 public static void main(String args[]) throws IOException {

 FileInputStream in = null;

 FileOutputStream out = null;

 try {

 in = new FileInputStream("input.txt");

 out = new FileOutputStream("output.txt");

 int c;

 while ((c = in.read()) != -1) {

 out.write(c);

 }

 }finally {

 if (in != null) {

 in.close();

 }

 if (out != null) {

 out.close();

 }

 }

 }

}

Now let's have a file input.txt with the following content −

This is test for copy file.

As a next step, compile the above program and execute it, which will result in
creating output.txt file with the same content as we have in input.txt. So let's put the
above code in CopyFile.java file and do the following −

$javac CopyFile.java

$java CopyFile

Character Streams

Java Byte streams are used to perform input and output of 8-bit bytes, whereas
Java Character streams are used to perform input and output for 16-bit unicode.
Though there are many classes related to character streams but the most frequently
used classes are, FileReader and FileWriter. Though internally FileReader uses
FileInputStream and FileWriter uses FileOutputStream but here the major difference
is that FileReader reads two bytes at a time and FileWriter writes two bytes at a
time.

We can re-write the above example, which makes the use of these two classes to
copy an input file (having unicode characters) into an output file −

Example

import java.io.*;

public class CopyFile {

 public static void main(String args[]) throws IOException {

 FileReader in = null;

 FileWriter out = null;

54

 try {

 in = new FileReader("input.txt");

 out = new FileWriter("output.txt");

 int c;

 while ((c = in.read()) != -1) {

 out.write(c);

 }

 }finally {

 if (in != null) {

 in.close();

 }

 if (out != null) {

 out.close();

 }

 }

 }

}

Now let's have a file input.txt with the following content −

This is test for copy file.

As a next step, compile the above program and execute it, which will result in
creating output.txt file with the same content as we have in input.txt. So let's put the
above code in CopyFile.java file and do the following −

$javac CopyFile.java

$java CopyFile

Standard Streams

All the programming languages provide support for standard I/O where the user's
program can take input from a keyboard and then produce an output on the
computer screen. If you are aware of C or C++ programming languages, then you
must be aware of three standard devices STDIN, STDOUT and STDERR. Similarly,
Java provides the following three standard streams −

 Standard Input − This is used to feed the data to user's program and usually a
keyboard is used as standard input stream and represented as System.in.

 Standard Output − This is used to output the data produced by the user's program and
usually a computer screen is used for standard output stream and represented
as System.out.

 Standard Error − This is used to output the error data produced by the user's program
and usually a computer screen is used for standard error stream and represented
as System.err.

Following is a simple program, which creates InputStreamReader to read standard
input stream until the user types a "q" −

Example

Live Demo

http://tpcg.io/lVH2u1

55

import java.io.*;

public class ReadConsole {

 public static void main(String args[]) throws IOException {

 InputStreamReader cin = null;

 try {

 cin = new InputStreamReader(System.in);

 System.out.println("Enter characters, 'q' to quit.");

 char c;

 do {

 c = (char) cin.read();

 System.out.print(c);

 } while(c != 'q');

 }finally {

 if (cin != null) {

 cin.close();

 }

 }

 }

}

Let's keep the above code in ReadConsole.java file and try to compile and execute
it as shown in the following program. This program continues to read and output the
same character until we press 'q' −

$javac ReadConsole.java

$java ReadConsole

Enter characters, 'q' to quit.

1

1

e

e

q

q

Reading and Writing Files

As described earlier, a stream can be defined as a sequence of data.
The InputStream is used to read data from a source and the OutputStream is
used for writing data to a destination.

Here is a hierarchy of classes to deal with Input and Output streams.

56

The two important streams are FileInputStream and FileOutputStream, which
would be discussed in this tutorial.

FileInputStream

This stream is used for reading data from the files. Objects can be created using the
keyword new and there are several types of constructors available.

Following constructor takes a file name as a string to create an input stream object
to read the file −

InputStream f = new FileInputStream("C:/java/hello");

Following constructor takes a file object to create an input stream object to read the
file. First we create a file object using File() method as follows −

File f = new File("C:/java/hello");

InputStream f = new FileInputStream(f);

Once you have InputStream object in hand, then there is a list of helper methods
which can be used to read to stream or to do other operations on the stream.

Sr.No. Method & Description

1
public void close() throws IOException{}

This method closes the file output stream. Releases any system resources associated with the
file. Throws an IOException.

57

2
protected void finalize()throws IOException {}

This method cleans up the connection to the file. Ensures that the close method of this file
output stream is called when there are no more references to this stream. Throws an
IOException.

3
public int read(int r)throws IOException{}

This method reads the specified byte of data from the InputStream. Returns an int. Returns the
next byte of data and -1 will be returned if it's the end of the file.

4
public int read(byte[] r) throws IOException{}

This method reads r.length bytes from the input stream into an array. Returns the total number
of bytes read. If it is the end of the file, -1 will be returned.

5
public int available() throws IOException{}

Gives the number of bytes that can be read from this file input stream. Returns an int.

There are other important input streams available, for more detail you can refer to
the following links −

 ByteArrayInputStream

 DataInputStream

FileOutputStream

FileOutputStream is used to create a file and write data into it. The stream would
create a file, if it doesn't already exist, before opening it for output.

Here are two constructors which can be used to create a FileOutputStream object.

Following constructor takes a file name as a string to create an input stream object
to write the file −

OutputStream f = new FileOutputStream("C:/java/hello")

Following constructor takes a file object to create an output stream object to write
the file. First, we create a file object using File() method as follows −

File f = new File("C:/java/hello");

OutputStream f = new FileOutputStream(f);

Once you have OutputStream object in hand, then there is a list of helper methods,
which can be used to write to stream or to do other operations on the stream.

Sr.No. Method & Description

1
public void close() throws IOException{}

https://www.tutorialspoint.com/java/java_bytearrayinputstream.htm
https://www.tutorialspoint.com/java/java_datainputstream.htm

58

This method closes the file output stream. Releases any system resources associated with the
file. Throws an IOException.

2
protected void finalize()throws IOException {}

This method cleans up the connection to the file. Ensures that the close method of this file
output stream is called when there are no more references to this stream. Throws an
IOException.

3
public void write(int w)throws IOException{}

This methods writes the specified byte to the output stream.

4
public void write(byte[] w)

Writes w.length bytes from the mentioned byte array to the OutputStream.

There are other important output streams available, for more detail you can refer to
the following links −

 ByteArrayOutputStream

 DataOutputStream

Example

Following is the example to demonstrate InputStream and OutputStream −

import java.io.*;

public class fileStreamTest {

 public static void main(String args[]) {

 try {

 byte bWrite [] = {11,21,3,40,5};

 OutputStream os = new FileOutputStream("test.txt");

 for(int x = 0; x < bWrite.length ; x++) {

 os.write(bWrite[x]); // writes the bytes

 }

 os.close();

 InputStream is = new FileInputStream("test.txt");

 int size = is.available();

 for(int i = 0; i < size; i++) {

 System.out.print((char)is.read() + " ");

 }

 is.close();

 } catch (IOException e) {

 System.out.print("Exception");

 }

 }

}

https://www.tutorialspoint.com/java/java_bytearrayoutputstream.htm
https://www.tutorialspoint.com/java/java_dataoutputstream.htm

59

The above code would create file test.txt and would write given numbers in binary
format. Same would be the output on the stdout screen.

File Navigation and I/O

There are several other classes that we would be going through to get to know the
basics of File Navigation and I/O.

 File Class

 FileReader Class

 FileWriter Class

Directories in Java

A directory is a File which can contain a list of other files and directories. You
use File object to create directories, to list down files available in a directory. For
complete detail, check a list of all the methods which you can call on File object and
what are related to directories.

Creating Directories

There are two useful File utility methods, which can be used to create directories −

 The mkdir() method creates a directory, returning true on success and false on failure.
Failure indicates that the path specified in the File object already exists, or that the
directory cannot be created because the entire path does not exist yet.

 The mkdirs() method creates both a directory and all the parents of the directory.

Following example creates "/tmp/user/java/bin" directory −

Example

import java.io.File;

public class CreateDir {

 public static void main(String args[]) {

 String dirname = "/tmp/user/java/bin";

 File d = new File(dirname);

 // Create directory now.

 d.mkdirs();

 }

}

Compile and execute the above code to create "/tmp/user/java/bin".

Note − Java automatically takes care of path separators on UNIX and Windows as
per conventions. If you use a forward slash (/) on a Windows version of Java, the
path will still resolve correctly.

Listing Directories

https://www.tutorialspoint.com/java/java_file_class.htm
https://www.tutorialspoint.com/java/java_filereader_class.htm
https://www.tutorialspoint.com/java/java_filewriter_class.htm

60

You can use list() method provided by File object to list down all the files and
directories available in a directory as follows −

Example

import java.io.File;

public class ReadDir {

 public static void main(String[] args) {

 File file = null;

 String[] paths;

 try {

 // create new file object

 file = new File("/tmp");

 // array of files and directory

 paths = file.list();

 // for each name in the path array

 for(String path:paths) {

 // prints filename and directory name

 System.out.println(path);

 }

 } catch (Exception e) {

 // if any error occurs

 e.printStackTrace();

 }

 }

}

This will produce the following result based on the directories and files available in
your /tmp directory −

Output

test1.txt

test2.txt

ReadDir.java

ReadDir.class

61

UNIT 4

Java Applet Applet is a special type of program that is embedded in the

webpage to generate the dynamic content. It runs inside the browser and

works at client side.

Advantage of Applet

o It works at client side so less response time.

o Secured

o It can be executed by browsers running under many plateforms, including Linux,

Windows, Mac Os etc.

Drawback of Applet

o Plugin is required at client browser to execute applet.

Do You Know

o Who is responsible to manage the life cycle of an applet ?

o How to perform animation in applet ?

o How to paint like paint brush in applet ?

o How to display digital clock in applet ?

o How to display analog clock in applet ?

o How to communicate two applets ?

Hierarchy of Applet

62

As displayed in the above diagram, Applet class extends Panel. Panel class extends

Container which is the subclass of Component.

Lifecycle of Java Applet

1. Applet is initialized.

2. Applet is started.

3. Applet is painted.

4. Applet is stopped.

5. Applet is destroyed.

63

Lifecycle methods for Applet:

The java.applet.Applet class 4 life cycle methods and java.awt.Component class provides
1 life cycle methods for an applet.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited. It provides 4 life cycle
methods of applet.

1. public void init(): is used to initialized the Applet. It is invoked only once.

2. public void start(): is invoked after the init() method or browser is maximized.

It is used to start the Applet.

3. public void stop(): is used to stop the Applet. It is invoked when Applet is stop

or browser is minimized.

4. public void destroy(): is used to destroy the Applet. It is invoked only once.

java.awt.Component class

The Component class provides 1 life cycle method of applet.

1. public void paint(Graphics g): is used to paint the Applet. It provides Graphics

class object that can be used for drawing oval, rectangle, arc etc.

64

Who is responsible to manage the life cycle of an applet?

Java Plug-in software.

How to run an Applet?

There are two ways to run an applet

1. By html file.

2. By appletViewer tool (for testing purpose).

Simple example of Applet by html file:

To execute the applet by html file, create an applet and compile it. After that create an
html file and place the applet code in html file. Now click the html file.

1. //First.java

2. import java.applet.Applet;

3. import java.awt.Graphics;

4. public class First extends Applet{

5.

6. public void paint(Graphics g){

7. g.drawString("welcome",150,150);

8. }

9.

10. }

Note: class must be public because its object is created by Java Plugin software that

resides on the browser.

myapplet.html

1. <html>

2. <body>

3. <applet code="First.class" width="300" height="300">

4. </applet>

5. </body>

6. </html>

65

Simple example of Applet by appletviewer tool:

To execute the applet by appletviewer tool, create an applet that contains applet tag in

comment and compile it. After that run it by: appletviewer First.java. Now Html file is

not required but it is for testing purpose only.

1. //First.java

2. import java.applet.Applet;

3. import java.awt.Graphics;

4. public class First extends Applet{

5.

6. public void paint(Graphics g){

7. g.drawString("welcome to applet",150,150);

8. }

9.

10. }

11. /*

12. <applet code="First.class" width="300" height="300">

13. </applet>

14. */

To execute the applet by appletviewer tool, write in command prompt:

c:\>javac First.java

c:\>appletviewer First.java

Displaying Graphics in Applet

java.awt.Graphics class provides many methods for graphics programming.

Commonly used methods of Graphics class:

1. public abstract void drawString(String str, int x, int y): is used to draw the

specified string.

2. public void drawRect(int x, int y, int width, int height): draws a rectangle

with the specified width and height.

3. public abstract void fillRect(int x, int y, int width, int height): is used to fill

rectangle with the default color and specified width and height.

4. public abstract void drawOval(int x, int y, int width, int height): is used to

draw oval with the specified width and height.

5. public abstract void fillOval(int x, int y, int width, int height): is used to fill

oval with the default color and specified width and height.

6. public abstract void drawLine(int x1, int y1, int x2, int y2): is used to draw

line between the points(x1, y1) and (x2, y2).

66

7. public abstract boolean drawImage(Image img, int x, int y,

ImageObserver observer): is used draw the specified image.

8. public abstract void drawArc(int x, int y, int width, int height, int

startAngle, int arcAngle): is used draw a circular or elliptical arc.

9. public abstract void fillArc(int x, int y, int width, int height, int

startAngle, int arcAngle): is used to fill a circular or elliptical arc.

10. public abstract void setColor(Color c): is used to set the graphics current

color to the specified color.

11. public abstract void setFont(Font font): is used to set the graphics current

font to the specified font.

Example of Graphics in applet:

1. import java.applet.Applet;

2. import java.awt.*;

3.

4. public class GraphicsDemo extends Applet{

5.

6. public void paint(Graphics g){

7. g.setColor(Color.red);

8. g.drawString("Welcome",50, 50);

9. g.drawLine(20,30,20,300);

10. g.drawRect(70,100,30,30);

11. g.fillRect(170,100,30,30);

12. g.drawOval(70,200,30,30);

13.

14. g.setColor(Color.pink);

15. g.fillOval(170,200,30,30);

16. g.drawArc(90,150,30,30,30,270);

17. g.fillArc(270,150,30,30,0,180);

18.

19. }

20. }

myapplet.html

1. <html>

2. <body>

3. <applet code="GraphicsDemo.class" width="300" height="300">

4. </applet>

5. </body>

67

6. </html>

Displaying Image in Applet

Applet is mostly used in games and animation. For this purpose image is required to be

displayed. The java.awt.Graphics class provide a method drawImage() to display the

image.

Syntax of drawImage() method:

1. public abstract boolean drawImage(Image img, int x, int y,

ImageObserver observer): is used draw the specified image.

How to get the object of Image:

The java.applet.Applet class provides getImage() method that returns the object of Image. Syntax:

1. public Image getImage(URL u, String image){}

Other required methods of Applet class to display
image:

1. public URL getDocumentBase(): is used to return the URL of the document

in which applet is embedded.

2. public URL getCodeBase(): is used to return the base URL.

Example of displaying image in applet:

1. import java.awt.*;

2. import java.applet.*;

3.

4.

5. public class DisplayImage extends Applet {

6.

7. Image picture;

8.

9. public void init() {

10. picture = getImage(getDocumentBase(),"sonoo.jpg");

11. }

12.

68

13. public void paint(Graphics g) {

14. g.drawImage(picture, 30,30, this);

15. }

16.

17. }

In the above example, drawImage() method of Graphics class is used to display the

image. The 4th argument of drawImage() method of is ImageObserver object. The

Component class implements ImageObserver interface. So current class object would

also be treated as ImageObserver because Applet class indirectly extends the

Component class.

myapplet.html

1. <html>

2. <body>

3. <applet code="DisplayImage.class" width="300" height="300">

4. </applet>

5. </body>

6. </html>

Animation in Applet
Applet is mostly used in games and animation. For this purpose image is required to be moved.

Example of animation in applet:

1. import java.awt.*;

2. import java.applet.*;

3. public class AnimationExample extends Applet {

4.

5. Image picture;

6.

7. public void init() {

8. picture =getImage(getDocumentBase(),"bike_1.gif");

9. }

10.

11. public void paint(Graphics g) {

12. for(int i=0;i<500;i++){

13. g.drawImage(picture, i,30, this);

14.

15. try{Thread.sleep(100);}catch(Exception e){}

16. }

69

17. }

18. }

In the above example, drawImage() method of Graphics class is used to display the

image. The 4th argument of drawImage() method of is ImageObserver object. The

Component class implements ImageObserver interface. So current class object would

also be treated as ImageObserver because Applet class indirectly extends the

Component class.

myapplet.html

1. <html>

2. <body>

3. <applet code="DisplayImage.class" width="300" height="300">

4. </applet>

5. </body>

6. </html>

DESIGN OF USER INTERFACE:

Java Swing

Java Swing tutorial is a part of Java Foundation Classes (JFC) that is used to create

window-based applications. It is built on the top of AWT (Abstract Windowing Toolkit)
API and entirely written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JTextField,
JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Difference between AWT and Swing

There are many differences between java awt and swing that are given below.

No. Java AWT Java Swing

1) AWT components are platform-

dependent.

Java swing components

are platform-independent.

2) AWT components are heavyweight. Swing components

are lightweight.

70

3) AWT doesn't support pluggable look

and feel.

Swing supports pluggable

look and feel.

4) AWT provides less components than

Swing.

Swing provides more powerful

components such as tables,

lists, scrollpanes, colorchooser,

tabbedpane etc.

5) AWT doesn't follows MVC(Model View

Controller) where model represents data,

view represents presentation and

controller acts as an interface between

model and view.

Swing follows MVC.

What is JFC

The Java Foundation Classes (JFC) are a set of GUI components which simplify the
development of desktop applications.

Hierarchy of Java Swing classes

The hierarchy of java swing API is given below.

71

Commonly used Methods of Component class

The methods of Component class are widely used in java swing that are given below.

Method Description

public void add(Component c) add a component on another component.

public void setSize(int width,int

height)

sets size of the component.

public void

setLayout(LayoutManager m)

sets the layout manager for the component.

public void setVisible(boolean b) sets the visibility of the component. It is by

default false.

Java Swing Examples

There are two ways to create a frame:

o By creating the object of Frame class (association)

o By extending Frame class (inheritance)

We can write the code of swing inside the main(), constructor or any other method.

Simple Java Swing Example

Let's see a simple swing example where we are creating one button and adding it on the
JFrame object inside the main() method.

File: FirstSwingExample.java

1. import javax.swing.*;

2. public class FirstSwingExample {

3. public static void main(String[] args) {

4. JFrame f=new JFrame();//creating instance of JFrame

5.

6. JButton b=new JButton("click");//creating instance of JButton

7. b.setBounds(130,100,100, 40);//x axis, y axis, width, height

8.

9. f.add(b);//adding button in JFrame

72

10.

11. f.setSize(400,500);//400 width and 500 height

12. f.setLayout(null);//using no layout managers

13. f.setVisible(true);//making the frame visible

14. }

15. }

Example of Swing by Association inside constructor

We can also write all the codes of creating JFrame, JButton and method call inside the
java constructor.

File: Simple.java

1. import javax.swing.*;

2. public class Simple {

3. JFrame f;

4. Simple(){

5. f=new JFrame();//creating instance of JFrame

6.

7. JButton b=new JButton("click");//creating instance of JButton

8. b.setBounds(130,100,100, 40);

9.

10. f.add(b);//adding button in JFrame

11.

12. f.setSize(400,500);//400 width and 500 height

13. f.setLayout(null);//using no layout managers

14. f.setVisible(true);//making the frame visible

73

15. }

16.

17. public static void main(String[] args) {

18. new Simple();

19. }

20. }

The setBounds(int xaxis, int yaxis, int width, int height)is used in the above example
that sets the position of the button.

Simple example of Swing by inheritance

We can also inherit the JFrame class, so there is no need to create the instance of
JFrame class explicitly.

File: Simple2.java

1. import javax.swing.*;

2. public class Simple2 extends JFrame{//inheriting JFrame

3. JFrame f;

4. Simple2(){

5. JButton b=new JButton("click");//create button

6. b.setBounds(130,100,100, 40);

7.

8. add(b);//adding button on frame

9. setSize(400,500);

10. setLayout(null);

11. setVisible(true);

12. }

13. public static void main(String[] args) {

14. new Simple2();

15. }}

download this example

What we will learn in Swing Tutorial

o JButton class

o JRadioButton class

o JTextArea class

o JComboBox class

o JTable class

o JColorChooser class

o JProgressBar class

https://static.javatpoint.com/src/swing/first2.zip

74

o JSlider class

o Digital Watch

o Graphics in swing

o Displaying image

o Edit menu code for Notepad

o OpenDialog Box

o Notepad

o Puzzle Game

o Pic Puzzle Game

o Tic Tac Toe Game

o BorderLayout

o GridLayout

o FlowLayout

o CardLayout

Java JButton

The JButton class is used to create a labeled button that has platform independent

implementation. The application result in some action when the button is pushed. It
inherits AbstractButton class.

JButton class declaration

Let's see the declaration for javax.swing.JButton class.

1. public class JButton extends AbstractButton implements Accessible

Commonly used Constructors:

Constructor Description

JButton() It creates a button with no text and icon.

JButton(String s) It creates a button with the specified text.

JButton(Icon i) It creates a button with the specified icon object.

75

Commonly used Methods of AbstractButton class:

Methods Description

void setText(String s) It is used to set specified text on button

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void setIcon(Icon b) It is used to set the specified Icon on the

button.

Icon getIcon() It is used to get the Icon of the button.

void setMnemonic(int a) It is used to set the mnemonic on the

button.

void addActionListener(ActionListener

a)

It is used to add the action listener to this

object.

Java JButton Example

1. import javax.swing.*;

2. public class ButtonExample {

3. public static void main(String[] args) {

4. JFrame f=new JFrame("Button Example");

5. JButton b=new JButton("Click Here");

6. b.setBounds(50,100,95,30);

7. f.add(b);

8. f.setSize(400,400);

9. f.setLayout(null);

10. f.setVisible(true);

11. }

12. }

Output:

https://www.javatpoint.com/java-actionlistener

76

Java JButton Example with ActionListener

1. import java.awt.event.*;

2. import javax.swing.*;

3. public class ButtonExample {

4. public static void main(String[] args) {

5. JFrame f=new JFrame("Button Example");

6. final JTextField tf=new JTextField();

7. tf.setBounds(50,50, 150,20);

8. JButton b=new JButton("Click Here");

9. b.setBounds(50,100,95,30);

10. b.addActionListener(new ActionListener(){

11. public void actionPerformed(ActionEvent e){

12. tf.setText("Welcome to Javatpoint.");

13. }

14. });

15. f.add(b);f.add(tf);

16. f.setSize(400,400);

17. f.setLayout(null);

18. f.setVisible(true);

19. }

20. }

Output:

77

Example of displaying image on the button:

1. import javax.swing.*;

2. public class ButtonExample{

3. ButtonExample(){

4. JFrame f=new JFrame("Button Example");

5. JButton b=new JButton(new ImageIcon("D:\\icon.png"));

6. b.setBounds(100,100,100, 40);

7. f.add(b);

8. f.setSize(300,400);

9. f.setLayout(null);

10. f.setVisible(true);

11. f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

12. }

13. public static void main(String[] args) {

14. new ButtonExample();

15. }

16. }

Output:

78

Java JLabel

The object of JLabel class is a component for placing text in a container. It is used to

display a single line of read only text. The text can be changed by an application but a
user cannot edit it directly. It inherits JComponent class.

JLabel class declaration

Let's see the declaration for javax.swing.JLabel class.

1. public class JLabel extends JComponent implements SwingConstants, Accessible

Commonly used Constructors:

Constructor Description

JLabel() Creates a JLabel instance with no image and

with an empty string for the title.

JLabel(String s) Creates a JLabel instance with the specified

text.

JLabel(Icon i) Creates a JLabel instance with the specified

image.

JLabel(String s, Icon i, int

horizontalAlignment)

Creates a JLabel instance with the specified

text, image, and horizontal alignment.

Commonly used Methods:

Methods Description

String getText() t returns the text string that a label displays.

void setText(String text) It defines the single line of text this

79

component will display.

void setHorizontalAlignment(int

alignment)

It sets the alignment of the label's contents

along the X axis.

Icon getIcon() It returns the graphic image that the label

displays.

int getHorizontalAlignment() It returns the alignment of the label's

contents along the X axis.

Java JLabel Example

1. import javax.swing.*;

2. class LabelExample

3. {

4. public static void main(String args[])

5. {

6. JFrame f= new JFrame("Label Example");

7. JLabel l1,l2;

8. l1=new JLabel("First Label.");

9. l1.setBounds(50,50, 100,30);

10. l2=new JLabel("Second Label.");

11. l2.setBounds(50,100, 100,30);

12. f.add(l1); f.add(l2);

13. f.setSize(300,300);

14. f.setLayout(null);

15. f.setVisible(true);

16. }

17. }

Output:

80

Java JLabel Example with ActionListener

1. import javax.swing.*;

2. import java.awt.*;

3. import java.awt.event.*;

4. public class LabelExample extends Frame implements ActionListener{

5. JTextField tf; JLabel l; JButton b;

6. LabelExample(){

7. tf=new JTextField();

8. tf.setBounds(50,50, 150,20);

9. l=new JLabel();

10. l.setBounds(50,100, 250,20);

11. b=new JButton("Find IP");

12. b.setBounds(50,150,95,30);

13. b.addActionListener(this);

14. add(b);add(tf);add(l);

15. setSize(400,400);

16. setLayout(null);

17. setVisible(true);

18. }

19. public void actionPerformed(ActionEvent e) {

20. try{

21. String host=tf.getText();

22. String ip=java.net.InetAddress.getByName(host).getHostAddress();

23. l.setText("IP of "+host+" is: "+ip);

24. }catch(Exception ex){System.out.println(ex);}

25. }

26. public static void main(String[] args) {

27. new LabelExample();

28. } }

Output:

81

Java JTextField

The object of a JTextField class is a text component that allows the editing of a single

line text. It inherits JTextComponent class.

JTextField class declaration

Let's see the declaration for javax.swing.JTextField class.

1. public class JTextField extends JTextComponent implements SwingConstants

Commonly used Constructors:

Constructor Description

JTextField() Creates a new TextField

JTextField(String text) Creates a new TextField initialized with the specified

text.

JTextField(String text, int

columns)

Creates a new TextField initialized with the specified

text and columns.

JTextField(int columns) Creates a new empty TextField with the specified

number of columns.

82

 Methods Description

 void

addActionListener(ActionListener l)

It is used to add the specified

action listener to receive action

events from this textfield.

 Action getAction() It returns the currently set

Action for this ActionEvent

source, or null if no Action is set.

 void setFont(Font f) It is used to set the current font.

void

removeActionListener(ActionListener l)

It is used to remove the

specified action listener so that

it no longer receives action

83

Java JTextField Example

1. import javax.swing.*;

1.2. class TextFieldExample

3.

4. {

5. public static void main(String args[])

6. {

7. JFrame f= new JFrame("TextField Example");

8. JTextField t1,t2;

9. t1=new JTextField("Welcome to Javatpoint.");

10. t1.setBounds(50,100, 200,30);

11. t2=new JTextField("AWT Tutorial");

12. t2.setBounds(50,150, 200,30);

13. f.add(t1); f.add(t2);

14. f.setSize(400,400);

15. f.setLayout(null);

16. f.setVisible(true);

17. }

18. }

Output:

events from this textfield.

84

Java JTextField Example with ActionListener

1. import javax.swing.*;

2. import java.awt.event.*;

3. public class TextFieldExample implements ActionListener{

4. JTextField tf1,tf2,tf3;

5. JButton b1,b2;

6. TextFieldExample(){

7. JFrame f= new JFrame();

8. tf1=new JTextField();

9. tf1.setBounds(50,50,150,20);

10. tf2=new JTextField();

11. tf2.setBounds(50,100,150,20);

12. tf3=new JTextField();

13. tf3.setBounds(50,150,150,20);

14. tf3.setEditable(false);

15. b1=new JButton("+");

16. b1.setBounds(50,200,50,50);

17. b2=new JButton("-");

18. b2.setBounds(120,200,50,50);

19. b1.addActionListener(this);

20. b2.addActionListener(this);

21. f.add(tf1);f.add(tf2);f.add(tf3);f.add(b1);f.add(b2);

22. f.setSize(300,300);

23. f.setLayout(null);

85

24. f.setVisible(true);

25. }

26. public void actionPerformed(ActionEvent e) {

27. String s1=tf1.getText();

28. String s2=tf2.getText();

29. int a=Integer.parseInt(s1);

30. int b=Integer.parseInt(s2);

31. int c=0;

32. if(e.getSource()==b1){

33. c=a+b;

34. }else if(e.getSource()==b2){

35. c=a-b;

36. }

37. String result=String.valueOf(c);

38. tf3.setText(result);

39. }

40. public static void main(String[] args) {

41. new TextFieldExample();

42. } }

Output:

Java JTextArea

The object of a JTextArea class is a multi line region that displays text. It allows the
editing of multiple line text. It inherits JTextComponent class

JTextArea class declaration

86

Let's see the declaration for javax.swing.JTextArea class.

1. public class JTextArea extends JTextComponent

Commonly used Constructors:

Constructor Description

JTextArea() Creates a text area that displays no text initially.

JTextArea(String s) Creates a text area that displays specified text

initially.

JTextArea(int row, int

column)

Creates a text area with the specified number of rows

and columns that displays no text initially.

JTextArea(String s, int row,

int column)

Creates a text area with the specified number of rows

and columns that displays specified text.

Commonly used Methods:

Methods Description

void setRows(int rows) It is used to set specified number of rows.

void setColumns(int cols) It is used to set specified number of columns.

void setFont(Font f) It is used to set the specified font.

void insert(String s, int

position)

It is used to insert the specified text on the specified

position.

void append(String s) It is used to append the given text to the end of the

document.

87

Java JTextArea Example

1. import javax.swing.*;

2. public class TextAreaExample

3. {

4. TextAreaExample(){

5. JFrame f= new JFrame();

6. JTextArea area=new JTextArea("Welcome to javatpoint");

7. area.setBounds(10,30, 200,200);

8. f.add(area);

9. f.setSize(300,300);

10. f.setLayout(null);

11. f.setVisible(true);

12. }

13. public static void main(String args[])

14. {

15. new TextAreaExample();

16. }}

Output:

Java JTextArea Example with ActionListener

1. import javax.swing.*;

2. import java.awt.event.*;

88

3. public class TextAreaExample implements ActionListener{

4. JLabel l1,l2;

5. JTextArea area;

6. JButton b;

7. TextAreaExample() {

8. JFrame f= new JFrame();

9. l1=new JLabel();

10. l1.setBounds(50,25,100,30);

11. l2=new JLabel();

12. l2.setBounds(160,25,100,30);

13. area=new JTextArea();

14. area.setBounds(20,75,250,200);

15. b=new JButton("Count Words");

16. b.setBounds(100,300,120,30);

17. b.addActionListener(this);

18. f.add(l1);f.add(l2);f.add(area);f.add(b);

19. f.setSize(450,450);

20. f.setLayout(null);

21. f.setVisible(true);

22. }

23. public void actionPerformed(ActionEvent e){

24. String text=area.getText();

25. String words[]=text.split("\\s");

26. l1.setText("Words: "+words.length);

27. l2.setText("Characters: "+text.length());

28. }

29. public static void main(String[] args) {

30. new TextAreaExample();

31. }

32. }

Output:

Output:

89

Java JPasswordField

The object of a JPasswordField class is a text component specialized for password entry.

It allows the editing of a single line of text. It inherits JTextField class.

JPasswordField class declaration

Let's see the declaration for javax.swing.JPasswordField class.

1. public class JPasswordField extends JTextField

90

Commonly used Constructors:

Constructor Description

JPasswordField() Constructs a new JPasswordField, with a default

document, null starting text string, and 0 column

width.

JPasswordField(int columns) Constructs a new empty JPasswordField with the

specified number of columns.

JPasswordField(String text) Constructs a new JPasswordField initialized with the

specified text.

JPasswordField(String text,

int columns)

Construct a new JPasswordField initialized with the

specified text and columns.

Java JPasswordField Example

1. import javax.swing.*;

2. public class PasswordFieldExample {

3. public static void main(String[] args) {

4. JFrame f=new JFrame("Password Field Example");

5. JPasswordField value = new JPasswordField();

6. JLabel l1=new JLabel("Password:");

7. l1.setBounds(20,100, 80,30);

8. value.setBounds(100,100,100,30);

9. f.add(value); f.add(l1);

10. f.setSize(300,300);

11. f.setLayout(null);

12. f.setVisible(true);

13. }

14. }

Output:

91

Java JPasswordField Example with ActionListener

1. import javax.swing.*;

2. import java.awt.event.*;

3. public class PasswordFieldExample {

4. public static void main(String[] args) {

5. JFrame f=new JFrame("Password Field Example");

6. final JLabel label = new JLabel();

7. label.setBounds(20,150, 200,50);

8. final JPasswordField value = new JPasswordField();

9. value.setBounds(100,75,100,30);

10. JLabel l1=new JLabel("Username:");

11. l1.setBounds(20,20, 80,30);

12. JLabel l2=new JLabel("Password:");

13. l2.setBounds(20,75, 80,30);

14. JButton b = new JButton("Login");

15. b.setBounds(100,120, 80,30);

16. final JTextField text = new JTextField();

17. text.setBounds(100,20, 100,30);

18. f.add(value); f.add(l1); f.add(label); f.add(l2); f.add(b); f.add(text);

19. f.setSize(300,300);

20. f.setLayout(null);

21. f.setVisible(true);

22. b.addActionListener(new ActionListener() {

23. public void actionPerformed(ActionEvent e) {

24. String data = "Username " + text.getText();

92

25. data += ", Password: "

26. + new String(value.getPassword());

27. label.setText(data);

28. }

29. });

30. }

31. }

Output:

Java JCheckBox

The JCheckBox class is used to create a checkbox. It is used to turn an option on (true)

or off (false). Clicking on a CheckBox changes its state from "on" to "off" or from "off" to

"on ".It inherits JToggleButton class.

JCheckBox class declaration

Let's see the declaration for javax.swing.JCheckBox class.

1. public class JCheckBox extends JToggleButton implements Accessible

Commonly used Constructors:

Constructor Description

JJCheckBox() Creates an initially unselected check box button

https://www.javatpoint.com/java-jtogglebutton

93

with no text, no icon.

JChechBox(String s) Creates an initially unselected check box with text.

JCheckBox(String text,

boolean selected)

Creates a check box with text and specifies

whether or not it is initially selected.

JCheckBox(Action a) Creates a check box where properties are taken

from the Action supplied.

Commonly used Methods:

Methods Description

AccessibleContext

getAccessibleContext()

It is used to get the AccessibleContext

associated with this JCheckBox.

protected String paramString() It returns a string representation of this

JCheckBox.

Java JCheckBox Example

1. import javax.swing.*;

2. public class CheckBoxExample

3. {

4. CheckBoxExample(){

5. JFrame f= new JFrame("CheckBox Example");

6. JCheckBox checkBox1 = new JCheckBox("C++");

7. checkBox1.setBounds(100,100, 50,50);

8. JCheckBox checkBox2 = new JCheckBox("Java", true);

9. checkBox2.setBounds(100,150, 50,50);

10. f.add(checkBox1);

11. f.add(checkBox2);

12. f.setSize(400,400);

13. f.setLayout(null);

14. f.setVisible(true);

https://www.javatpoint.com/java-string

94

15. }

16. public static void main(String args[])

17. {

18. new CheckBoxExample();

19. }}

Output:

Java JCheckBox Example with ItemListener

1. import javax.swing.*;

2. import java.awt.event.*;

3. public class CheckBoxExample

4. {

5. CheckBoxExample(){

6. JFrame f= new JFrame("CheckBox Example");

7. final JLabel label = new JLabel();

8. label.setHorizontalAlignment(JLabel.CENTER);

9. label.setSize(400,100);

10. JCheckBox checkbox1 = new JCheckBox("C++");

11. checkbox1.setBounds(150,100, 50,50);

12. JCheckBox checkbox2 = new JCheckBox("Java");

13. checkbox2.setBounds(150,150, 50,50);

14. f.add(checkbox1); f.add(checkbox2); f.add(label);

15. checkbox1.addItemListener(new ItemListener() {

16. public void itemStateChanged(ItemEvent e) {

95

17. label.setText("C++ Checkbox: "

18. + (e.getStateChange()==1?"checked":"unchecked"));

19. }

20. });

21. checkbox2.addItemListener(new ItemListener() {

22. public void itemStateChanged(ItemEvent e) {

23. label.setText("Java Checkbox: "

24. + (e.getStateChange()==1?"checked":"unchecked"));

25. }

26. });

27. f.setSize(400,400);

28. f.setLayout(null);

29. f.setVisible(true);

30. }

31. public static void main(String args[])

32. {

33. new CheckBoxExample();

34. }

35. }

Output:

Java JCheckBox Example: Food Order

1. import javax.swing.*;

2. import java.awt.event.*;

3. public class CheckBoxExample extends JFrame implements ActionListener{

96

4. JLabel l;

5. JCheckBox cb1,cb2,cb3;

6. JButton b;

7. CheckBoxExample(){

8. l=new JLabel("Food Ordering System");

9. l.setBounds(50,50,300,20);

10. cb1=new JCheckBox("Pizza @ 100");

11. cb1.setBounds(100,100,150,20);

12. cb2=new JCheckBox("Burger @ 30");

13. cb2.setBounds(100,150,150,20);

14. cb3=new JCheckBox("Tea @ 10");

15. cb3.setBounds(100,200,150,20);

16. b=new JButton("Order");

17. b.setBounds(100,250,80,30);

18. b.addActionListener(this);

19. add(l);add(cb1);add(cb2);add(cb3);add(b);

20. setSize(400,400);

21. setLayout(null);

22. setVisible(true);

23. setDefaultCloseOperation(EXIT_ON_CLOSE);

24. }

25. public void actionPerformed(ActionEvent e){

26. float amount=0;

27. String msg="";

28. if(cb1.isSelected()){

29. amount+=100;

30. msg="Pizza: 100\n";

31. }

32. if(cb2.isSelected()){

33. amount+=30;

34. msg+="Burger: 30\n";

35. }

36. if(cb3.isSelected()){

37. amount+=10;

38. msg+="Tea: 10\n";

39. }

40. msg+="-----------------\n";

41. JOptionPane.showMessageDialog(this,msg+"Total: "+amount);

42. }

43. public static void main(String[] args) {

44. new CheckBoxExample();

45. }

46. }

97

Output:

Java JRadioButton

The JRadioButton class is used to create a radio button. It is used to choose one option
from multiple options. It is widely used in exam systems or quiz.

It should be added in ButtonGroup to select one radio button only.

JRadioButton class declaration

Let's see the declaration for javax.swing.JRadioButton class.

1. public class JRadioButton extends JToggleButton implements Accessible

Commonly used Constructors:

98

Constructor Description

JRadioButton() Creates an unselected radio button with no

text.

JRadioButton(String s) Creates an unselected radio button with

specified text.

JRadioButton(String s, boolean

selected)

Creates a radio button with the specified text

and selected status.

Commonly used Methods:

Methods Description

void setText(String s) It is used to set specified text on button.

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void setIcon(Icon b) It is used to set the specified Icon on the

button.

Icon getIcon() It is used to get the Icon of the button.

void setMnemonic(int a) It is used to set the mnemonic on the

button.

void addActionListener(ActionListener

a)

It is used to add the action listener to this

object.

99

Java JRadioButton Example

1. import javax.swing.*;

2. public class RadioButtonExample {

3. JFrame f;

4. RadioButtonExample(){

5. f=new JFrame();

6. JRadioButton r1=new JRadioButton("A) Male");

7. JRadioButton r2=new JRadioButton("B) Female");

8. r1.setBounds(75,50,100,30);

9. r2.setBounds(75,100,100,30);

10. ButtonGroup bg=new ButtonGroup();

11. bg.add(r1);bg.add(r2);

12. f.add(r1);f.add(r2);

13. f.setSize(300,300);

14. f.setLayout(null);

15. f.setVisible(true);

16. }

17. public static void main(String[] args) {

18. new RadioButtonExample();

19. }

20. }

Output:

Java JRadioButton Example with ActionListener

1. import javax.swing.*;

100

2. import java.awt.event.*;

3. class RadioButtonExample extends JFrame implements ActionListener{

4. JRadioButton rb1,rb2;

5. JButton b;

6. RadioButtonExample(){

7. rb1=new JRadioButton("Male");

8. rb1.setBounds(100,50,100,30);

9. rb2=new JRadioButton("Female");

10. rb2.setBounds(100,100,100,30);

11. ButtonGroup bg=new ButtonGroup();

12. bg.add(rb1);bg.add(rb2);

13. b=new JButton("click");

14. b.setBounds(100,150,80,30);

15. b.addActionListener(this);

16. add(rb1);add(rb2);add(b);

17. setSize(300,300);

18. setLayout(null);

19. setVisible(true);

20. }

21. public void actionPerformed(ActionEvent e){

22. if(rb1.isSelected()){

23. JOptionPane.showMessageDialog(this,"You are Male.");

24. }

25. if(rb2.isSelected()){

26. JOptionPane.showMessageDialog(this,"You are Female.");

27. }

28. }

29. public static void main(String args[]){

30. new RadioButtonExample();

31. }}

Output:

101

Java JComboBox

The object of Choice class is used to show popup menu of choices. Choice selected by

user is shown on the top of a menu. It inherits JComponent class.

JComboBox class declaration

Let's see the declaration for javax.swing.JComboBox class.

1. public class JComboBox extends JComponent implements ItemSelectable, ListDat

aListener, ActionListener, Accessible

Commonly used Constructors:

Constructor Description

JComboBox() Creates a JComboBox with a default data model.

JComboBox(Object[] items) Creates a JComboBox that contains the elements in

the specified array.

JComboBox(Vector<?>

items)

Creates a JComboBox that contains the elements in

the specified Vector.

https://www.javatpoint.com/java-jmenuitem-and-jmenu
https://www.javatpoint.com/java-jcomponent
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/scala-vector

102

Commonly used Methods:

Methods Description

void addItem(Object anObject) It is used to add an item to the item list.

void removeItem(Object anObject) It is used to delete an item to the item list.

void removeAllItems() It is used to remove all the items from the

list.

void setEditable(boolean b) It is used to determine whether the

JComboBox is editable.

void addActionListener(ActionListener

a)

It is used to add the ActionListener.

void addItemListener(ItemListener i) It is used to add the ItemListener.

Java JComboBox Example

1. import javax.swing.*;

2. public class ComboBoxExample {

3. JFrame f;

4. ComboBoxExample(){

5. f=new JFrame("ComboBox Example");

6. String country[]={"India","Aus","U.S.A","England","Newzealand"};

7. JComboBox cb=new JComboBox(country);

8. cb.setBounds(50, 50,90,20);

9. f.add(cb);

10. f.setLayout(null);

11. f.setSize(400,500);

12. f.setVisible(true);

13. }

14. public static void main(String[] args) {

15. new ComboBoxExample();

16. }

17. }

https://www.javatpoint.com/java-actionlistener
https://www.javatpoint.com/java-itemlistener

103

Output:

Java JComboBox Example with ActionListener

1. import javax.swing.*;

2. import java.awt.event.*;

3. public class ComboBoxExample {

4. JFrame f;

5. ComboBoxExample(){

6. f=new JFrame("ComboBox Example");

7. final JLabel label = new JLabel();

8. label.setHorizontalAlignment(JLabel.CENTER);

9. label.setSize(400,100);

10. JButton b=new JButton("Show");

11. b.setBounds(200,100,75,20);

12. String languages[]={"C","C++","C#","Java","PHP"};

13. final JComboBox cb=new JComboBox(languages);

14. cb.setBounds(50, 100,90,20);

15. f.add(cb); f.add(label); f.add(b);

16. f.setLayout(null);

17. f.setSize(350,350);

18. f.setVisible(true);

19. b.addActionListener(new ActionListener() {

20. public void actionPerformed(ActionEvent e) {

21. String data = "Programming language Selected: "

22. + cb.getItemAt(cb.getSelectedIndex());

104

23. label.setText(data);

24. }

25. });

26. }

27. public static void main(String[] args) {

28. new ComboBoxExample();

29. }

30. }

Output:

Java JTable

The JTable class is used to display data in tabular form. It is composed of rows and

columns.

JTable class declaration

Let's see the declaration for javax.swing.JTable class.

Commonly used Constructors:

Constructor Description

JTable() Creates a table with empty cells.

JTable(Object[][] rows, Object[] columns) Creates a table with the specified data.

105

Java JTable Example

1. import javax.swing.*;

2. public class TableExample {

3. JFrame f;

4. TableExample(){

5. f=new JFrame();

6. String data[][]={ {"101","Amit","670000"},

7. {"102","Jai","780000"},

8. {"101","Sachin","700000"}};

9. String column[]={"ID","NAME","SALARY"};

10. JTable jt=new JTable(data,column);

11. jt.setBounds(30,40,200,300);

12. JScrollPane sp=new JScrollPane(jt);

13. f.add(sp);

14. f.setSize(300,400);

15. f.setVisible(true);

16. }

17. public static void main(String[] args) {

18. new TableExample();

19. }

20. }

Output:

Java JTable Example with ListSelectionListener

106

1. import javax.swing.*;

2. import javax.swing.event.*;

3. public class TableExample {

4. public static void main(String[] a) {

5. JFrame f = new JFrame("Table Example");

6. String data[][]={ {"101","Amit","670000"},

7. {"102","Jai","780000"},

8. {"101","Sachin","700000"}};

9. String column[]={"ID","NAME","SALARY"};

10. final JTable jt=new JTable(data,column);

11. jt.setCellSelectionEnabled(true);

12. ListSelectionModel select= jt.getSelectionModel();

13. select.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

14. select.addListSelectionListener(new ListSelectionListener() {

15. public void valueChanged(ListSelectionEvent e) {

16. String Data = null;

17. int[] row = jt.getSelectedRows();

18. int[] columns = jt.getSelectedColumns();

19. for (int i = 0; i < row.length; i++) {

20. for (int j = 0; j < columns.length; j++) {

21. Data = (String) jt.getValueAt(row[i], columns[j]);

22. } }

23. System.out.println("Table element selected is: " + Data);

24. }

25. });

26. JScrollPane sp=new JScrollPane(jt);

27. f.add(sp);

28. f.setSize(300, 200);

29. f.setVisible(true);

30. }

31. }

Output:

107

If you select an element in column NAME, name of the element will be displayed on the
console:

1. Table element selected is: Sachin

Java JList

The object of JList class represents a list of text items. The list of text items can be set

up so that the user can choose either one item or multiple items. It inherits JComponent

class.

JList class declaration

Let's see the declaration for javax.swing.JList class.

1. public class JList extends JComponent implements Scrollable, Accessible

Commonly used Constructors:

Constructor Description

JList() Creates a JList with an empty, read-only, model.

JList(ary[] listData) Creates a JList that displays the elements in the

specified array.

JList(ListModel<ary>

dataModel)

Creates a JList that displays elements from the

specified, non-null, model.

Commonly used Methods:

Methods Description

Void

addListSelectionListener(ListSelectionListener

listener)

It is used to add a listener to the

list, to be notified each time a

change to the selection occurs.

108

int getSelectedIndex() It is used to return the smallest

selected cell index.

ListModel getModel() It is used to return the data

model that holds a list of items

displayed by the JList

component.

void setListData(Object[] listData) It is used to create a read-only

ListModel from an array of

objects.

Java JList Example

1. import javax.swing.*;

2. public class ListExample

3. {

4. ListExample(){

5. JFrame f= new JFrame();

6. DefaultListModel<String> l1 = new DefaultListModel<>();

7. l1.addElement("Item1");

8. l1.addElement("Item2");

9. l1.addElement("Item3");

10. l1.addElement("Item4");

11. JList<String> list = new JList<>(l1);

12. list.setBounds(100,100, 75,75);

13. f.add(list);

14. f.setSize(400,400);

15. f.setLayout(null);

16. f.setVisible(true);

17. }

18. public static void main(String args[])

19. {

20. new ListExample();

21. }}

Output:

109

Java JList Example with ActionListener

1. import javax.swing.*;

2. import java.awt.event.*;

3. public class ListExample

4. {

5. ListExample(){

6. JFrame f= new JFrame();

7. final JLabel label = new JLabel();

8. label.setSize(500,100);

9. JButton b=new JButton("Show");

10. b.setBounds(200,150,80,30);

11. final DefaultListModel<String> l1 = new DefaultListModel<>();

12. l1.addElement("C");

13. l1.addElement("C++");

14. l1.addElement("Java");

15. l1.addElement("PHP");

16. final JList<String> list1 = new JList<>(l1);

17. list1.setBounds(100,100, 75,75);

18. DefaultListModel<String> l2 = new DefaultListModel<>();

19. l2.addElement("Turbo C++");

20. l2.addElement("Struts");

21. l2.addElement("Spring");

22. l2.addElement("YII");

23. final JList<String> list2 = new JList<>(l2);

24. list2.setBounds(100,200, 75,75);

25. f.add(list1); f.add(list2); f.add(b); f.add(label);

110

26. f.setSize(450,450);

27. f.setLayout(null);

28. f.setVisible(true);

29. b.addActionListener(new ActionListener() {

30. public void actionPerformed(ActionEvent e) {

31. String data = "";

32. if (list1.getSelectedIndex() != -1) {

33. data = "Programming language Selected: " + list1.getSelectedValue();

34. label.setText(data);

35. }

36. if(list2.getSelectedIndex() != -1){

37. data += ", FrameWork Selected: ";

38. for(Object frame :list2.getSelectedValues()){

39. data += frame + " ";

40. }

41. }

42. label.setText(data);

43. }

44. });

45. }

46. public static void main(String args[])

47. {

48. new ListExample();

49. }}

Output:

111

Java JOptionPane

The JOptionPane class is used to provide standard dialog boxes such as message dialog

box, confirm dialog box and input dialog box. These dialog boxes are used to display
information or get input from the user. The JOptionPane class inherits JComponent class.

JOptionPane class declaration

1. public class JOptionPane extends JComponent implements Accessible

Common Constructors of JOptionPane class

Constructor Description

JOptionPane() It is used to create a JOptionPane with a test

message.

JOptionPane(Object message) It is used to create an instance of JOptionPane to

display a message.

JOptionPane(Object message,

int messageType

It is used to create an instance of JOptionPane to

display a message with specified message type and

default options.

Common Methods of JOptionPane class

Methods Description

JDialog createDialog(String title) It is used to create and return a

new parentless JDialog with the

specified title.

static void showMessageDialog(Component

parentComponent, Object message)

It is used to create an information-

message dialog titled "Message".

static void showMessageDialog(Component

parentComponent, Object message, String

It is used to create a message

dialog with given title and

112

title, int messageType) messageType.

static int showConfirmDialog(Component

parentComponent, Object message)

It is used to create a dialog with

the options Yes, No and Cancel;

with the title, Select an Option.

static String showInputDialog(Component

parentComponent, Object message)

It is used to show a question-

message dialog requesting input

from the user parented to

parentComponent.

void setInputValue(Object newValue) It is used to set the input value

that was selected or input by the

user.

Java JOptionPane Example: showMessageDialog()

1. import javax.swing.*;

2. public class OptionPaneExample {

3. JFrame f;

4. OptionPaneExample(){

5. f=new JFrame();

6. JOptionPane.showMessageDialog(f,"Hello, Welcome to Javatpoint.");

7. }

8. public static void main(String[] args) {

9. new OptionPaneExample();

10. }

11. }

Output:

113

Java JOptionPane Example: showMessageDialog()

1. import javax.swing.*;

2. public class OptionPaneExample {

3. JFrame f;

4. OptionPaneExample(){

5. f=new JFrame();

6. JOptionPane.showMessageDialog(f,"Successfully Updated.","Alert",JOptionPane.WARN

ING_MESSAGE);

7. }

8. public static void main(String[] args) {

9. new OptionPaneExample();

10. }

11. }

Output:

Java JOptionPane Example: showInputDialog()

1. import javax.swing.*;

2. public class OptionPaneExample {

3. JFrame f;

4. OptionPaneExample(){

5. f=new JFrame();

6. String name=JOptionPane.showInputDialog(f,"Enter Name");

7. }

8. public static void main(String[] args) {

9. new OptionPaneExample();

10. }

11. }

Output:

114

Java JOptionPane Example: showConfirmDialog()

1. import javax.swing.*;

2. import java.awt.event.*;

3. public class OptionPaneExample extends WindowAdapter{

4. JFrame f;

5. OptionPaneExample(){

6. f=new JFrame();

7. f.addWindowListener(this);

8. f.setSize(300, 300);

9. f.setLayout(null);

10. f.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

11. f.setVisible(true);

12. }

13. public void windowClosing(WindowEvent e) {

14. int a=JOptionPane.showConfirmDialog(f,"Are you sure?");

15. if(a==JOptionPane.YES_OPTION){

16. f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

17. }

18. }

19. public static void main(String[] args) {

20. new OptionPaneExample();

21. }

22. }

Output:

115

Java JScrollBar

The object of JScrollbar class is used to add horizontal and vertical scrollbar. It is an

implementation of a scrollbar. It inherits JComponent class.

JScrollBar class declaration

Let's see the declaration for javax.swing.JScrollBar class.

1. public class JScrollBar extends JComponent implements Adjustable, Accessible

Commonly used Constructors:

Constructor Description

JScrollBar() Creates a vertical scrollbar with the initial

values.

JScrollBar(int orientation) Creates a scrollbar with the specified

orientation and the initial values.

JScrollBar(int orientation, int value,

int extent, int min, int max)

Creates a scrollbar with the specified

orientation, value, extent, minimum, and

maximum.

116

Java JScrollBar Example

1. import javax.swing.*;

2. class ScrollBarExample

3. {

4. ScrollBarExample(){

5. JFrame f= new JFrame("Scrollbar Example");

6. JScrollBar s=new JScrollBar();

7. s.setBounds(100,100, 50,100);

8. f.add(s);

9. f.setSize(400,400);

10. f.setLayout(null);

11. f.setVisible(true);

12. }

13. public static void main(String args[])

14. {

15. new ScrollBarExample();

16. }}

Output:

Java JScrollBar Example with AdjustmentListener

1. import javax.swing.*;

2. import java.awt.event.*;

3. class ScrollBarExample

4. {

5. ScrollBarExample(){

6. JFrame f= new JFrame("Scrollbar Example");

7. final JLabel label = new JLabel();

8. label.setHorizontalAlignment(JLabel.CENTER);

9. label.setSize(400,100);

10. final JScrollBar s=new JScrollBar();

11. s.setBounds(100,100, 50,100);

12. f.add(s); f.add(label);

13. f.setSize(400,400);

14. f.setLayout(null);

15. f.setVisible(true);

16. s.addAdjustmentListener(new AdjustmentListener() {

17. public void adjustmentValueChanged(AdjustmentEvent e) {

117

18. label.setText("Vertical Scrollbar value is:"+ s.getValue());

19. }

20. });

21. }

22. public static void main(String args[])

23. {

24. new ScrollBarExample();

25. }}

Output:

Swings

Java Swing tutorial is a part of Java Foundation Classes (JFC) that is used to create

window-based applications. It is built on the top of AWT (Abstract Windowing Toolkit)

API and entirely written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JTextField,
JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Difference between AWT and Swing

There are many differences between java awt and swing that are given below.

N

o.

Java AWT Java Swing

1

)

AWT components

are platform-

dependent.

Java swing components are platform-independent.

2

)

AWT components

are heavyweight.

Swing components are lightweight.

3

)

AWT doesn't

support pluggable

look and feel.

Swing supports pluggable look and feel.

118

4

)

AWT provides less

components than

Swing.

Swing provides more powerful components such

as tables, lists, scrollpanes, colorchooser, tabbedpane

etc.

5

)

AWT doesn't

follows MVC(Model

View Controller)

where model

represents data,

view represents

presentation and

controller acts as an

interface between

model and view.

Swing follows MVC.

What is JFC

The Java Foundation Classes (JFC) are a set of GUI components which simplify the
development of desktop applications.

Do You Know

o How to create runnable jar file in java?

o How to display image on a button in swing?

o How to change the component color by choosing a color from ColorChooser ?

o How to display the digital watch in swing tutorial ?

o How to create a notepad in swing?

o How to create puzzle game and pic puzzle game in swing ?

o How to create tic tac toe game in swing ?

Hierarchy of Java Swing classes

The hierarchy of java swing API is given below.

119

Commonly used Methods of Component class

The methods of Component class are widely used in java swing that are given below.

Method Description

public void add(Component c) add a component on another component.

public void setSize(int width,int

height)

sets size of the component.

public void

setLayout(LayoutManager m)

sets the layout manager for the component.

120

public void setVisible(boolean b) sets the visibility of the component. It is by default false.

Java Swing Examples

There are two ways to create a frame:

o By creating the object of Frame class (association)

o By extending Frame class (inheritance)

We can write the code of swing inside the main(), constructor or any other method.

Simple Java Swing Example

Let's see a simple swing example where we are creating one button and adding it on the
JFrame object inside the main() method.

File: FirstSwingExample.java

1. import javax.swing.*;

2. public class FirstSwingExample {

3. public static void main(String[] args) {

4. JFrame f=new JFrame();//creating instance of JFrame

5.

6. JButton b=new JButton("click");//creating instance of JButton

7. b.setBounds(130,100,100, 40);//x axis, y axis, width, height

8.

9. f.add(b);//adding button in JFrame

10.

11. f.setSize(400,500);//400 width and 500 height

12. f.setLayout(null);//using no layout managers

13. f.setVisible(true);//making the frame visible

14. }

15. }

121

Example of Swing by Association inside constructor

We can also write all the codes of creating JFrame, JButton and method call inside the
java constructor.

File: Simple.java

1. import javax.swing.*;

2. public class Simple {

3. JFrame f;

4. Simple(){

5. f=new JFrame();//creating instance of JFrame

6.

7. JButton b=new JButton("click");//creating instance of JButton

8. b.setBounds(130,100,100, 40);

9.

10. f.add(b);//adding button in JFrame

122

11.

12. f.setSize(400,500);//400 width and 500 height

13. f.setLayout(null);//using no layout managers

14. f.setVisible(true);//making the frame visible

15. }

16.

17. public static void main(String[] args) {

18. new Simple();

19. }

20. }

The setBounds(int xaxis, int yaxis, int width, int height)is used in the above example
that sets the position of the button.

Simple example of Swing by inheritance

We can also inherit the JFrame class, so there is no need to create the instance of
JFrame class explicitly.

File: Simple2.java

1. import javax.swing.*;

2. public class Simple2 extends JFrame{//inheriting JFrame

3. JFrame f;

4. Simple2(){

5. JButton b=new JButton("click");//create button

6. b.setBounds(130,100,100, 40);

7.

8. add(b);//adding button on frame

9. setSize(400,500);

10. setLayout(null);

11. setVisible(true);

12. }

13. public static void main(String[] args) {

14. new Simple2();

15. }}

download this example

What we will learn in Swing Tutorial

o JButton class

o JRadioButton class

o JTextArea class

https://static.javatpoint.com/src/swing/first2.zip

123

o JComboBox class

o JTable class

o JColorChooser class

o JProgressBar class

o JSlider class

o Digital Watch

o Graphics in swing

o Displaying image

o Edit menu code for Notepad

o OpenDialog Box

o Notepad

o Puzzle Game

o Pic Puzzle Game

o Tic Tac Toe Game

o BorderLayout

o GridLayout

o FlowLayout

o CardLayout

Next

Multithreading programming

ava is a multi-threaded programming language which means we can develop multi-
threaded program using Java. A multi-threaded program contains two or more parts
that can run concurrently and each part can handle a different task at the same time
making optimal use of the available resources specially when your computer has
multiple CPUs.

By definition, multitasking is when multiple processes share common processing
resources such as a CPU. Multi-threading extends the idea of multitasking into
applications where you can subdivide specific operations within a single application
into individual threads. Each of the threads can run in parallel. The OS divides
processing time not only among different applications, but also among each thread
within an application.

Multi-threading enables you to write in a way where multiple activities can proceed
concurrently in the same program.

Life Cycle of a Thread

124

A thread goes through various stages in its life cycle. For example, a thread is born,
started, runs, and then dies. The following diagram shows the complete life cycle of
a thread.

Following are the stages of the life cycle −

 New − A new thread begins its life cycle in the new state. It remains in this state until the
program starts the thread. It is also referred to as a born thread.

 Runnable − After a newly born thread is started, the thread becomes runnable. A thread
in this state is considered to be executing its task.

 Waiting − Sometimes, a thread transitions to the waiting state while the thread waits for
another thread to perform a task. A thread transitions back to the runnable state only
when another thread signals the waiting thread to continue executing.

 Timed Waiting − A runnable thread can enter the timed waiting state for a specified
interval of time. A thread in this state transitions back to the runnable state when that
time interval expires or when the event it is waiting for occurs.

 Terminated (Dead) − A runnable thread enters the terminated state when it completes
its task or otherwise terminates.

Thread Priorities

Every Java thread has a priority that helps the operating system determine the
order in which threads are scheduled.

Java thread priorities are in the range between MIN_PRIORITY (a constant of 1)
and MAX_PRIORITY (a constant of 10). By default, every thread is given priority
NORM_PRIORITY (a constant of 5).

Threads with higher priority are more important to a program and should be
allocated processor time before lower-priority threads. However, thread priorities
cannot guarantee the order in which threads execute and are very much platform
dependent.

Create a Thread by Implementing a Runnable Interface

If your class is intended to be executed as a thread then you can achieve this by
implementing a Runnable interface. You will need to follow three basic steps −

125

Step 1

As a first step, you need to implement a run() method provided by
a Runnable interface. This method provides an entry point for the thread and you
will put your complete business logic inside this method. Following is a simple
syntax of the run() method −

public void run()

Step 2

As a second step, you will instantiate a Thread object using the following
constructor −

Thread(Runnable threadObj, String threadName);

Where, threadObj is an instance of a class that implements the Runnable interface
and threadName is the name given to the new thread.

Step 3

Once a Thread object is created, you can start it by calling start() method, which
executes a call to run() method. Following is a simple syntax of start() method −

void start();

Example

Here is an example that creates a new thread and starts running it −

Live Demo

class RunnableDemo implements Runnable {

 private Thread t;

 private String threadName;

 RunnableDemo(String name) {

 threadName = name;

 System.out.println("Creating " + threadName);

 }

 public void run() {

 System.out.println("Running " + threadName);

 try {

 for(int i = 4; i > 0; i--) {

 System.out.println("Thread: " + threadName + ", " +

i);

 // Let the thread sleep for a while.

 Thread.sleep(50);

 }

 } catch (InterruptedException e) {

 System.out.println("Thread " + threadName + "

interrupted.");

http://tpcg.io/6iqMVy

126

 }

 System.out.println("Thread " + threadName + " exiting.");

 }

 public void start () {

 System.out.println("Starting " + threadName);

 if (t == null) {

 t = new Thread (this, threadName);

 t.start ();

 }

 }

}

public class TestThread {

 public static void main(String args[]) {

 RunnableDemo R1 = new RunnableDemo("Thread-1");

 R1.start();

 RunnableDemo R2 = new RunnableDemo("Thread-2");

 R2.start();

 }

}

This will produce the following result −

Output

Creating Thread-1

Starting Thread-1

Creating Thread-2

Starting Thread-2

Running Thread-1

Thread: Thread-1, 4

Running Thread-2

Thread: Thread-2, 4

Thread: Thread-1, 3

Thread: Thread-2, 3

Thread: Thread-1, 2

Thread: Thread-2, 2

Thread: Thread-1, 1

Thread: Thread-2, 1

Thread Thread-1 exiting.

Thread Thread-2 exiting.

Create a Thread by Extending a Thread Class

The second way to create a thread is to create a new class that
extends Thread class using the following two simple steps. This approach provides
more flexibility in handling multiple threads created using available methods in
Thread class.

127

Step 1

You will need to override run() method available in Thread class. This method
provides an entry point for the thread and you will put your complete business logic
inside this method. Following is a simple syntax of run() method −

public void run()

Step 2

Once Thread object is created, you can start it by calling start() method, which
executes a call to run() method. Following is a simple syntax of start() method −

void start();

Example

Here is the preceding program rewritten to extend the Thread −

Live Demo

class ThreadDemo extends Thread {

 private Thread t;

 private String threadName;

 ThreadDemo(String name) {

 threadName = name;

 System.out.println("Creating " + threadName);

 }

 public void run() {

 System.out.println("Running " + threadName);

 try {

 for(int i = 4; i > 0; i--) {

 System.out.println("Thread: " + threadName + ", " +

i);

 // Let the thread sleep for a while.

 Thread.sleep(50);

 }

 } catch (InterruptedException e) {

 System.out.println("Thread " + threadName + "

interrupted.");

 }

 System.out.println("Thread " + threadName + " exiting.");

 }

 public void start () {

 System.out.println("Starting " + threadName);

 if (t == null) {

 t = new Thread (this, threadName);

 t.start ();

 }

 }

http://tpcg.io/rVxO3k

128

}

public class TestThread {

 public static void main(String args[]) {

 ThreadDemo T1 = new ThreadDemo("Thread-1");

 T1.start();

 ThreadDemo T2 = new ThreadDemo("Thread-2");

 T2.start();

 }

}

This will produce the following result −

Output

Creating Thread-1

Starting Thread-1

Creating Thread-2

Starting Thread-2

Running Thread-1

Thread: Thread-1, 4

Running Thread-2

Thread: Thread-2, 4

Thread: Thread-1, 3

Thread: Thread-2, 3

Thread: Thread-1, 2

Thread: Thread-2, 2

Thread: Thread-1, 1

Thread: Thread-2, 1

Thread Thread-1 exiting.

Thread Thread-2 exiting.

Thread Methods

Following is the list of important methods available in the Thread class.

Sr.No. Method & Description

1
public void start()

Starts the thread in a separate path of execution, then invokes the run() method on this
Thread object.

2
public void run()

If this Thread object was instantiated using a separate Runnable target, the run() method is
invoked on that Runnable object.

129

3
public final void setName(String name)

Changes the name of the Thread object. There is also a getName() method for retrieving the
name.

4
public final void setPriority(int priority)

Sets the priority of this Thread object. The possible values are between 1 and 10.

5
public final void setDaemon(boolean on)

A parameter of true denotes this Thread as a daemon thread.

6
public final void join(long millisec)

The current thread invokes this method on a second thread, causing the current thread to
block until the second thread terminates or the specified number of milliseconds passes.

7
public void interrupt()

Interrupts this thread, causing it to continue execution if it was blocked for any reason.

8
public final boolean isAlive()

Returns true if the thread is alive, which is any time after the thread has been started but
before it runs to completion.

The previous methods are invoked on a particular Thread object. The following
methods in the Thread class are static. Invoking one of the static methods performs
the operation on the currently running thread.

Sr.No. Method & Description

1
public static void yield()

Causes the currently running thread to yield to any other threads of the same priority that are
waiting to be scheduled.

2
public static void sleep(long millisec)

Causes the currently running thread to block for at least the specified number of milliseconds.

3
public static boolean holdsLock(Object x)

Returns true if the current thread holds the lock on the given Object.

130

4
public static Thread currentThread()

Returns a reference to the currently running thread, which is the thread that invokes this
method.

5
public static void dumpStack()

Prints the stack trace for the currently running thread, which is useful when debugging a
multithreaded application.

Example

The following ThreadClassDemo program demonstrates some of these methods of
the Thread class. Consider a class DisplayMessage which
implements Runnable −

// File Name : DisplayMessage.java

// Create a thread to implement Runnable

public class DisplayMessage implements Runnable {

 private String message;

 public DisplayMessage(String message) {

 this.message = message;

 }

 public void run() {

 while(true) {

 System.out.println(message);

 }

 }

}

Following is another class which extends the Thread class −

// File Name : GuessANumber.java

// Create a thread to extentd Thread

public class GuessANumber extends Thread {

 private int number;

 public GuessANumber(int number) {

 this.number = number;

 }

 public void run() {

 int counter = 0;

 int guess = 0;

 do {

 guess = (int) (Math.random() * 100 + 1);

 System.out.println(this.getName() + " guesses " +

guess);

 counter++;

131

 } while(guess != number);

 System.out.println("** Correct!" + this.getName() + "in" +

counter + "guesses.**");

 }

}

Following is the main program, which makes use of the above-defined classes −

// File Name : ThreadClassDemo.java

public class ThreadClassDemo {

 public static void main(String [] args) {

 Runnable hello = new DisplayMessage("Hello");

 Thread thread1 = new Thread(hello);

 thread1.setDaemon(true);

 thread1.setName("hello");

 System.out.println("Starting hello thread...");

 thread1.start();

 Runnable bye = new DisplayMessage("Goodbye");

 Thread thread2 = new Thread(bye);

 thread2.setPriority(Thread.MIN_PRIORITY);

 thread2.setDaemon(true);

 System.out.println("Starting goodbye thread...");

 thread2.start();

 System.out.println("Starting thread3...");

 Thread thread3 = new GuessANumber(27);

 thread3.start();

 try {

 thread3.join();

 } catch (InterruptedException e) {

 System.out.println("Thread interrupted.");

 }

 System.out.println("Starting thread4...");

 Thread thread4 = new GuessANumber(75);

 thread4.start();

 System.out.println("main() is ending...");

 }

}

This will produce the following result. You can try this example again and again and
you will get a different result every time.

Output

Starting hello thread...

Starting goodbye thread...

Hello

Hello

Hello

Hello

132

Hello

Hello

Goodbye

Goodbye

Goodbye

Goodbye

Goodbye

.......

Major Java Multithreading Concepts

While doing Multithreading programming in Java, you would need to have the
following concepts very handy −

 What is thread synchronization?

 Handling interthread communication

 Handling thread deadlock

 Major thread operations

 UNIT: 2

JDBC: Java Database Connectivity (JDBC) is an application programming interface (API) for the

programming language Java, which defines how a client may access a database. ... It provides
methods to query and update data in a database, and is oriented towards relational databases.

Fundamental Steps in JDBC
The fundamental steps involved in the process of connecting to a database and executing a query consist of the following:

 Import JDBC packages.

 Load and register the JDBC driver.

 Open a connection to the database.

 Create a statement object to perform a query.

 Execute the statement object and return a query resultset.

 Process the resultset.

 Close the resultset and statement objects.

 Close the connection.

These steps are described in detail in the sections that follow.

Import JDBC Packages
This is for making the JDBC API classes immediately available to the application program. The following import statement
should be included in the program irrespective of the JDBC driver being used:

https://www.tutorialspoint.com/java/java_thread_synchronization.htm
https://www.tutorialspoint.com/java/java_thread_communication.htm
https://www.tutorialspoint.com/java/java_thread_deadlock.htm
https://www.tutorialspoint.com/java/java_thread_control.htm

133

import java.sql.*;

Additionally, depending on the features being used, Oracle-supplied JDBC packages might need to be imported. For example,
the following packages might need to be imported while using the Oracle extensions to JDBC such as using advanced data
types such as BLOB, and so on.

import oracle.jdbc.driver.*;

import oracle.sql.*;

Load and Register the JDBC Driver
This is for establishing a communication between the JDBC program and the Oracle database. This is done by using the

static registerDriver() method of the DriverManager class of the JDBC API. The following line of code does this job:

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

JDBC Driver Registration

For the entire Java application, the JDBC driver is registered only once per each database that needs to be accessed. This is
true even when there are multiple database connections to the same data server.

Alternatively, the forName() method of the java.lang.Class class can be used to load and register the JDBC driver:

Class.forName("oracle.jdbc.driver.OracleDriver");

However, the forName() method is valid for only JDK-compliant Java Virtual Machines and implicitly creates an instance of

the Oracle driver, whereas the registerDriver() method does this explicitly.

Connecting to a Database
Once the required packages have been imported and the Oracle JDBC driver has been loaded and registered, a database

connection must be established. This is done by using the getConnection() method of the DriverManager class. A call to

this method creates an object instance of the java.sql.Connection class. The getConnection() requires three input

parameters, namely, a connect string, a username, and a password. The connect string should specify the JDBC driver to be
yes and the database instance to connect to.

The getConnection() method is an overloaded method that takes

 Three parameters, one each for the URL, username, and password.

 Only one parameter for the database URL. In this case, the URL contains the username and password.

The following lines of code illustrate using the getConnection() method:

Connection conn = DriverManager.getConnection(URL, username, passwd);

Connection conn = DriverManager.getConnection(URL);

134

where URL, username, and passwd are of String data types.

We will discuss the methods of opening a connection using the Oracle JDBC OCI and thin _drivers.

When using the OCI driver, the database can be specified using the TNSNAMES entry in the tnsnames.ora file. For example,
to connect to a database on a particular host as user oratest and password oratest that has a TNSNAMES entry of
oracle.world, use the following code:

Connection conn = DriverManager.getConnection("jdbc:oracle:oci8:

@oracle.world", "oratest", "oratest");

Both the ":" and "@" are mandatory.

When using the JDBC thin driver, the TNSNAMES entry cannot be used to identify the database. There are two ways of
specifying the connect string in this case, namely,

 Explicitly specifying the hostname, the TCP/IP port number, and the Oracle SID of the database to connect to. This is for
thin driver only.

 Specify a Net8 keyword-value pair list.

For example, for the explicit method, use the following code to connect to a database on host training where the TCP/IP

listener is on port 1521, the SID for the database instance is Oracle, the username and password are both oratest:

Connection conn = DriverManager.getConnection

 ("jdbc:oracle:thin:@training:1521:Oracle",

 "oratest", "oratest");

For the Net8 keyword-value pair list, use the following:

Connection conn = DriverManager.getConnection

 ("jdbc:oracle:thin@(description=(address=

 (host=training)(protocol=tcp)(port=1521))

 (connect_data=(sid=Oracle))) ", _"oratest", "oratest");

This method can also be used for the JDBC OCI driver. Just specify oci8 instead of thin in the above keyword-value pair list.

Querying the Database
Querying the database involves two steps: first, creating a statement object to perform a query, and second, executing the
query and returning a resultset.

135

Creating a Statement Object
This is to instantiate objects that run the query against the database connected to. This is done by

the createStatement() method of the conn Connection object created above. A call to this method creates an object

instance of the Statement class. The following line of code illustrates this:

Statement sql_stmt = conn.createStatement();

Executing the Query and Returning a ResultSet
Once a Statement object has been constructed, the next step is to execute the query. This is done by using

the executeQuery() method of the Statement object. A call to this method takes as parameter a SQL SELECT statement

and returns a JDBC ResultSet object. The following line of code illustrates this using the sql_stmt object created above:

ResultSet rset = sql_stmt.executeQuery

 ("SELECT empno, ename, sal, deptno FROM emp ORDER BY ename");

Alternatively, the SQL statement can be placed in a string and then this string passed to the executeQuery() function. This is
shown below.

String sql = "SELECT empno, ename, sal, deptno FROM emp ORDER BY ename";

ResultSet rset = sql_stmt.executeQuery(sql);

Statement and ResultSet Objects

Statement and ResultSet objects open a corresponding cursor in the database for SELECT and other DML statements.

The above statement executes the SELECT statement specified in between the double quotes and stores the resulting rows in

an instance of the ResultSet object named rset.

Processing the Results of a Database Query That Returns Multiple Rows
Once the query has been executed, there are two steps to be carried out:

 Processing the output resultset to fetch the rows

 Retrieving the column values of the current row

The first step is done using the next() method of the ResultSet object. A call to next() is executed in a loop to fetch the

rows one row at a time, with each call to next() advancing the control to the next available row. The next() method returns

the Boolean value true while rows are still available for fetching and returns false when all the rows have been fetched.

The second step is done by using the getXXX() methods of the JDBC rset object. Here getXXX() corresponds to

the getInt(), getString() etc with XXX being replaced by a Java datatype.

The following code demonstrates the above steps:

String str;

while (rset.next())

136

 {

 str = rset.getInt(1)+ " "+ rset.getString(2)+ "

 "+rset.getFloat(3)+ " "rset.getInt(4)+ "\n";

 }

byte buf[] = str.getBytes();

OutputStream fp = new FileOutputStream("query1.lst");

fp.write(buf);

fp.close();

Here the 1, 2, 3, and 4 in rset.getInt(), rset.getString(), getFloat(), and getInt() respectively denote the

position of the columns in the SELECT statement, that is, the first column empno, second column ename, third column sal,

and fourth column deptno of the SELECT statement respectively.

Specifying get() Parameters

The parameters for the getXXX() methods can be specified by position of the corresponding columns as numbers 1, 2, and so

on, or by directly specifying the column names enclosed in double quotes, as getString("ename") and so on, or a

combination of both.

Closing the ResultSet and Statement
Once the ResultSet and Statement objects have been used, they must be closed explicitly. This is done by calls to

the close() method of the ResultSet and Statement classes. The following code illustrates this:

rset.close();

sql_stmt.close();

If not closed explicitly, there are two disadvantages:

 Memory leaks can occur

 Maximum Open cursors can be exceeded

Closing the ResultSet and Statement objects frees the corresponding cursor in the database.

Closing the Connection
The last step is to close the database connection opened in the beginning after importing the packages and loading the JDBC

drivers. This is done by a call to the close() method of the Connection class.

The following line of code does this:

conn.close();

137

Explicitly Close your Connection

Closing the ResultSet and Statement objects does not close the connection. The connection should be closed by explicitly

invoking the close() method of the Connection class.

A complete example of the above procedures using a JDBC thin driver is given below. This program queries the emp table and
writes the output rows to an operating system file.

//Import JDBC package

import java.sql.*;

// Import Java package for File I/O

import java.io.*;

public class QueryExample {

 public static void main (String[] args) throws SQLException, IOException

{

 //Load and register Oracle driver

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 //Establish a connection

 Connection conn = DriverManager.getConnection("jdbc:oracle:thin:

 @training:1521:Oracle", "oratest", "oratest");

 //Create a Statement object

 Statement sql_stmt = conn.createStatement();

 //Create a ResultSet object, execute the query and return a

 // resultset

 ResultSet rset = sql_stmt.executeQuery("SELECT empno, ename, sal,

 deptno FROM emp ORDER BY ename");

138

 //Process the resultset, retrieve data in each row, column by column

 //and write to an operating system file

String str = "";

while (rset.next())

 {

 str += rset.getInt(1)+" "+ rset.getString(2)+" "+

 rset.getFloat(3)+" "+rset.getInt(4)+"\n";

 }

 byte buf[] = str.getBytes();

OutputStream fp = new FileOutputStream("query1.lst");

fp.write(buf);

fp.close();

//Close the ResultSet and Statement

 rset.close();

 sql_stmt.close();

 //Close the database connection

 conn.close();

 }

}

Processing the Results of a Database Query That Returns a Single Row
The above sections and the complete example explained the processing of a query that returned multiple rows. This section
highlights the processing of a single-row query and explains how to write code that is the analogue of the PL/SQL

exception NO_DATA_FOUND.

139

NO DATA FOUND Exception

NO_DATA_FOUND exception in PL/SQL is simulated in JDBC by using the return value of the next() method of

the ResultSet object. A value of false returned by the next() method identifies a NO_DATA_FOUND exception.

Consider the following code (this uses the ResultSet object rset defined in the above sections):

if (rset.next())

 // Process the row returned

else

 System.out.println("The Employee with Empno "+ args[1] +

 "does not exist");

Instead of the while loop used earlier, an if statement is used to determine whether the SELECT statement returned a row or
not.

Datatype Mappings
Corresponding to each SQL data type, there exist mappings to the corresponding JDBC Types, standard Java types, and the
Java types provided by Oracle extensions. These are required to be used in JDBC programs that manipulate data and data
structures based on these types.

There are four categories of Data types any of which can be mapped to the others. These are:

 SQL Data types—These are Oracle SQL data types that exist in the database.

 JDBC Typecodes—These are the data typecodes supported by JDBC as defined in the java.sql.Types class or

defined by Oracle in oracle.jdbc.driver.OracleTypes class.

 Java Types—These are the standard types defined in the Java language.

 Oracle Extension Java Types—These are the Oracle extensions to the SQL data types and are defined in

the oracle.sql.* class. Mapping SQL data types to the oracle.sql.* Java types enables storage and retrieval of

SQL data without first converting into Java format thus preventing any loss of information.
Table 3.1 lists the default mappings existing between these four different types.

Table 3.1 Standard and Oracle-specific SQL-Java Data Type Mappings

SQL Data
types

JDBC Type codes Standard Java
Types

Oracle Extension Java _
Types

Standard JDBC 1.0 Types

CHAR java.sql.Types.CHAR java.lang.String oracle.sql.CHAR

VARCHAR2 java.sql.Types.VARCHAR java.lang.String oracle.sql.CHAR

LONG java.sql.Types. java.lang.String oracle.sql.CHAR_

140

SQL Data
types

JDBC Type codes Standard Java
Types

Oracle Extension Java _
Types

LONGVARCHAR

NUMBER java.sql.Types.NUMERIC java.math.BigDecim
al

oracle.sql.NUMBER

NUMBER java.sql.Types.DECIMAL java.math.BigDecim
al

oracle.sql.NUMBER

NUMBER java.sql.Types.BIT Boolean oracle.sql.NUMBER

NUMBER java.sql.Types.TINYINT byte oracle.sql.NUMBER

NUMBER java.sql.Types.SMALLINT short oracle.sql.NUMBER

NUMBER java.sql.Types.INTEGER int oracle.sql.NUMBER

NUMBER java.sql.Types.BIGINT long oracle.sql.NUMBER

NUMBER java.sql.Types.REAL float oracle.sql.NUMBER

NUMBER java.sql.Types.FLOAT double oracle.sql.NUMBER

NUMBER java.sql.Types.DOUBLE double oracle.sql.NUMBER

RAW java.sql.Types.BINARY byte[] oracle.sql.RAW

RAW java.sql.Types.VARBINARY byte[] oracle.sql.RAW

LONGRAW java.sql.Types.LONGVARBINA
RY

byte[] oracle.sql.RAW

DATE java.sql.Types.DATE java.sql.Date oracle.sql.DATE

DATE java.sql.Types.TIME java.sql.Time oracle.sql.DATE

DATE java.sql.Types.TIMESTAMP javal.sql.Timestamp oracle.sql.DATE

141

SQL Data
types

JDBC Type codes Standard Java
Types

Oracle Extension Java _
Types

Standard JDBC 2.0 Types

BLOB java.sql.Types.BLOB java.sql.Blob Oracle.sql.BLOB

CLOB Java.sql.Types.CLOB java.sql.Clob oracle.sql.CLOB

user-defined java.sql.Types.STRUCT java.sql.Struct oracle.sql.STRUCT_object

user-defined java.sql.Types.REF java.sql.Ref oracle.sql.REF_reference

user-defined java.sql.Types.ARRAY java.sql.Array oracle.sql.ARRAY_collecti
on

Oracle Extensions

BFILE oracle.jdbc.driver.

oracle.sql.BFILE_

n/a OracleTypes.BFILE

ROWID oracle.jdbc.driver.
oracle.sql.ROWID_

n/a OracleTypes.ROWID

REFCURSO
R type

oracle.jdbc.driver.
OracleTypes.CURSOR

java.sql.ResultSet oracle.jdbc.driver._

OracleResultSet

Exception Handling in JDBC
Like in PL/SQL programs, exceptions do occur in JDBC programs. Notice how the NO_DATA_FOUND exception was simulated

in the earlier section "Processing the Results of a Database Query That Returns a Single Row."
Exceptions in JDBC are usually of two types:

 Exceptions occurring in the JDBC driver

 Exceptions occurring in the Oracle 8i database itself

Just as PL/SQL provides for an implicit or explicit RAISE statement for an exception, Oracle JDBC programs have

a throw statement that is used to inform that JDBC calls throw the SQL exceptions. This is shown below.

throws SQLException

142

This creates instances of the class java.sql.SQLException or a subclass of it.

And, like in PL/SQL, SQL exceptions in JDBC have to be handled explicitly. Similar to PL/SQL exception handling sections,

Java provides a try..catch section that can handle all exceptions including SQL exceptions. Handling an exception can

basically include retrieving the error code, error text, the SQL state, and/or printing the error stack trace.

The SQLException class provides methods for obtaining all of this information in case of error conditions.

Retrieving Error Code, Error Text, and SQL State
There are the methods getErrorCode() and getMessage() similar to the functions SQLCODE and SQLERRM in PL/SQL. To

retrieve the SQL state, there is the method getSQLState(). A brief description of these methods is given below:

 getErrorCode()

 This function returns the five-digit ORA number of the error in case of exceptions occurring in the JDBC driver as well as
in the database.

 getMessage()

 This function returns the error message text in case of exceptions occurring in the JDBC driver. For exceptions occurring
in the database, this function returns the error message text prefixed with the ORA number.

 getSQLState()

 This function returns the five digit code indicating the SQL state only for exceptions occurring in the database.

The following code illustrates the use of exception handlers in JDBC:

try { <JDBC code> }

catch (SQLException e) { System.out.println("ERR: "+ e.getMessage())}

We now show the QueryExample class of the earlier section with complete exception handlers built in it. The code is as

follows:

//Import JDBC package

import java.sql.*;

// Import Java package for File I/O

import java.io.*;

public class QueryExample {

 public static void main (String[] args) {

 int ret_code;

 try {

 //Load and register Oracle driver

143

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 //Establish a connection

 Connection conn = DriverManager.getConnection("jdbc:oracle:thin:

 @training:1521:Oracle", "oratest", "oratest");

 //Create a Statement object

 Statement sql_stmt = conn.createStatement();

 //Create a ResultSet object, execute the query and return a

 // resultset

 ResultSet rset = sql_stmt.executeQuery("SELECT empno, ename, sal,

 deptno FROM emp ORDER BY ename");

 //Process the resultset, retrieve data in each row, column by column

 // and write to an operating system file

String str = "";

while (rset.next())

 {

 str += rset.getInt(1)+" "+ rset.getString(2)+" "+rset.getFloat(3)+

 " "+rset.getInt(4)+"\n";

 }

 byte buf[] = str.getBytes();

OutputStream fp = new FileOutputStream("query1.lst");

fp.write(buf);

144

fp.close();

//Close the ResultSet and Statement

 rset.close();

 sql_stmt.close();

 //Close the database connection

 conn.close();

} catch (SQLException e) {ret_code = e.getErrorCode();

 System.err.println("Oracle Error: "+ ret_code + e.getMessage());}

 catch (IOException e) {System.out.println("Java Error: "+

 e.getMessage()); }

 }

}

Printing Error Stack Trace
The SQLException has the method printStackTrace() for printing an error stack trace. This method prints the stack trace

of the throwable object to the standard error stream.
The following code illustrates this:

catch (SQLException e) { e.printStackTrace(); }

JAVABEANS:

1. How to Install NetBeans 8.2

1.1 How to Install NetBeans on Windows

Step 0: Install JDK

To use NetBeans for Java programming, you need to first install Java Development Kit (JDK). See "JDK - How to

Install".

Step 1: Download

Download "NetBeans IDE" installer from http://netbeans.org/downloads/index.html. There are many "bundles"

available. For beginners, choose the 1st entry "Java SE" (e.g., "netbeans-8.2-javase-windows.exe" 95MB).

https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html
http://netbeans.org/downloads/index.html

145

Step 2: Run the Installer

Run the downloaded installer.

1.2 How to Install NetBeans on Mac OS X

To use NetBeans for Java programming, you need to first install JDK. Read "How to install JDK on Mac".

To install NetBeans:

1. Download NetBeans from http://netbeans.org/downloads/. Set "Platform" to "Mac OS X". There are many

"bundles" available. For beginners, choose "Java SE" (e.g., "netbeans-8.2-javase-macosx.dmg"

116MB).

2. Double-click the download Disk Image (DMG) file.

3. Double-click the "NetBeans 8.x.mpkg", and follow the instructions to install NetBeans. NetBeans will

be installed under "/Applications/NetBeans".

4. Eject the Disk Image (".dmg").

You can launch NetBeans from the "Applications".

Notes: To uninstall NetBeans, drag the "/Applications/NetBeans" folder to trash.

1.3 How to Install NetBeans on Ubuntu Linux

To use NetBeans for Java programming, you need to first install JDK. Read "How to install JDK on Ubuntu".

To install NetBeans:

1. Download NetBeans from http://netbeans.org/downloads/. Choose platform "Linux (x86/x64)" ⇒ "Java

SE". You shall receive a sh file (e.g., "netbeans-7.x-ml-javase-linux.sh") in "~/Downloads".

2. Set the downloaded sh file to executable and run the sh file. Open a Terminal:

3. $ cd ~/Downloads
4. $ chmod a+x netbeans-7.x-ml-javase-linux.sh // Set to executable for all (a+x)

$./netbeans-7.x-ml-javase-linux.sh // Run

Follow the instructions to install NetBeans.

To start NetBeans, run the script "netbeans" in the NetBeans' bin directory:

$ cd netbeans-bin-directory
$./netbeans

2. Writing a Hello-world Java Program in NetBeans

Step 0: Launch NetBeans

Launch NetBeans. If the "Start Page" appears, close it by clicking the "cross" button next to the "Start Page" title.

Step 1: Create a New Project

For each Java application, you need to create a "project" to keep all the source files, classes and relevant

resources.

1. From "File" menu ⇒ Choose "New Project...".

2. The "Choose Project" diglog pops up ⇒ Under "Categories", choose "Java" ⇒ Under "Projects", choose

"Java Application" ⇒ "Next".

3. The "Name and Location" dialog pops up ⇒ Under "Project Name", enter "FirstProject" ⇒ In "Project

Location", select a suitable directory to save your works ⇒ Uncheck "Use Dedicated Folder for Storing

Libraries" ⇒ Uncheck "Create Main class" ⇒ Finish.

Step 2: Write a Hello-world Java Program

1. Right-click on "FirstProject" ⇒ New ⇒ Java Class (OR choose the "File" menu ⇒ "New File..." ⇒

Categories: "Java", File Types: "Java Class" ⇒ "Next").

2. The "Name and Location" dialog pops up ⇒ In "Class Name", enter "Hello" ⇒ Delete the content in

"Package" if it is not empty ⇒ "Finish".

3. The source file "Hello.java" appears in the editor panel. Enter the following codes:

4. public class Hello {

https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html#jdk_mac
http://netbeans.org/downloads/
https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html#jdk_ubuntu
http://netbeans.org/downloads/

146

5. public static void main(String[] args) {
6. System.out.println("Hello, world");
7. }

}

Step 3: Compile & Execute

There is no need to "compile" the source code in NetBeans explicitly, as NetBeans performs the so-

called incremental compilation (i.e., the source statement is compiled as and when it is entered).

To run the program, right-click anywhere in the source (or from the "Run" menu) ⇒ Run File. Observe the output

on the output console.

Notes:

 You should create a NEW Java project for EACH of your Java application.

 Nonetheless, NetBeans allows you to keep more than one programs in a project, which is handy for writing

toy programs (such as your tutorial exercises). To run a particular program, open and right-click on the

source file ⇒ Run File.

2.1 Correcting Syntax Error

NetBeans performs incremented compilation, as and when a source line is entered. It marked a source line with

syntax error with a RED CROSS. Point your cursor at the RED CROSS to view the error message.

You CANNOT RUN the program if there is any syntax error (marked by a RED CROSS before the filename). Correct

all the syntax errors; and RUN the program.

[TODO] Diagram

HINTS: In some cases, NetBeans shows a ORANGE LIGHT-BULB (for HINTS) next to the ERROR RED-CROSS (Line 5

in the above diagram). You can click on the LIGHT-BULB to get a list of HINTS to resolve this particular error,

which may or may not work!

SYNTAX WARNING: marked by a orange triangular exclaimation sign. Unlike errors, warnings may or may not

cause problems. Try to fix these warnings as well. But you can RUN your program with warnings.

3. Read the NetBeans Documentation

At a minimum, you SHOULD READ the "IDE Basics, Getting Started, Java Application", which is accessible via

NetBeans's "HELP" menu ⇒ Help Contents. This will save you many agonizing hours trying to figure out how to

do somethings later.

The "Help" ⇒ "Online Doc and Support" (@ http://netbeans.org/kb/index.html) contains many articles and

tutorial on using NetBeans.

The NetBeans "Start Page" also provides many useful links to get you started.

4. Debugging Program in NetBeans

Step 0: Write a Java Program

The following program computes and prints the factorial of n (=1*2*3*...*n). The program, however, has a

logical error and produce a wrong answer for n=20 ("The Factorial of 20 is -2102132736" - a

negative number?!).

1
2
3
4
5
6
7
8
9
10
11

/** Compute the factorial of n */
public class Factorial {
 // Print factorial of n
 public static void main(String[] args) {
 int n = 20;
 int factorial = 1;

 // n! = 1*2*3...*n
 for (int i = 1; i <= n; i++) {
 factorial *= i;
 }

http://netbeans.org/kb/index.html

147

12
13
14

 System.out.println("The Factorial of " + n + " is " + factorial);
 }
}

Let us use the graphic debugger to debug the program.

Step 1: Set an initial Breakpoint

A breakpoint suspends program execution for you to examine the internal states of the program. Before starting

the debugger, you need to set at least one breakpoint to suspend the execution inside the program. Set a

breakpoint at main() method by clicking on the left-margin of the line containing main(). A red circle or an

inverted Triangle appears in the left-margin indicating a breakpoint is set at that line.

Step 2: Start Debugging

Right click anywhere on the source code ⇒ "Debug File". The program begins execution but suspends its

operation at the breakpoint, i.e., the main() method.

As illustrated in the following diagram, the highlighted line (also pointed to by a green arrow) indicates the

statement to be executed in the next step.

Step 3: Step-Over and Watch the Variables and Outputs

Click the "Step Over" button (or select "Step Over" in "Debug" menu) to single-step thru your program. At each of

the step, examine the value of the variables (in the "Variable" panel) and the outputs produced by your program

(in the "Output" Panel), if any. You can also place your cursor at any variable to inspect the content of the

variable.

Single-stepping thru the program and watching the values of internal variables and the outputs produced is

the ultimate mean in debugging programs - because it is exactly how the computer runs your program!

Step 4: Breakpoint, Run-To-Cursor, Continue and Finish

As mentioned, a breakpoint suspends program execution and let you examine the internal states of the program.

To set a breakpoint on a particular statement, click on the left-margin of that line (or select "Toggle Breakpoint"

from "Run" menu).

"Continue" resumes the program execution, up to the next breakpoint, or till the end of the program.

"Single-step" thru a loop with a large count is time-consuming. You could set a breakpoint at the statement

immediately outside the loop (e.g., Line 11 of the above program), and issue "Continue" to complete the loop.

Alternatively, you can place the cursor on a particular statement, and issue "Run-To-Cursor" to resume execution

up to the line.

"Finish" ends the debugging session. Always terminate your current debugging session using "Finish" or

"Continue" till the end of the program.

4.1 Other Debugger's Features:

Modify the Value of a Variable

You can modify the value of a variable by entering a new value in the "Variable" panel. This is handy for

temporarily modifying the behaviour of a program, without changing the source code.

Step-Into and Step-Out

To debug a method, you need to use "Step-Into" to step into the first statement of the method. You could use

"Step-Out" to return back to the caller, anywhere within the method. Alternatively, you could set a breakpoint

inside a method.

5. NetBeans - Tips & Tricks

148

5.1 General Usage

These are the features that I find to be most useful in NetBeans:

1. Maximizing Window (double-click): You can double-click on the "header" of any panel

to maximize that particular panel, and double-click again to restore it back. This is particularly useful for

editing source code in full panel.

2. Code Auto-Complete (or Intelli-Sense) (ctrl-space): Enter a partial statement (e.g., Sys) and

press control-space to activate the auto-complete, which displays all the available choices.

3. Javadoc (ctrl-space, alt-F1): Place the cursor on a method or class, and press ctrl-space to view

the javadoc; or right-click ⇒ Show Javadoc (alt-F1) to open it on a browser.

4. Code Shorthand (tab): For example, you can enter "sout" and press TAB for

"System.out.println"; "psvm" for "public static void main(String[] args) { }" or

"fori" + tab for a for-loop. To view and configure code template, choose "Tools" menu ⇒ "Options" ⇒

"Editor" ⇒ "Code Templates".

5. Formatting Source Code (alt-shift-f): Right-click on the source (or from the "Source" menu) ⇒

Choose "Format". NetBeans will layout your source codes with the proper indents and format. To

configure the formatting, choose "Tools" menu ⇒ "Options" ⇒ "Editor" ⇒ "Formatting".

You can also select the section of codes to be formatted, instead of the entire file.

6. Hints for Correcting Syntax Error: If there is a syntax error on a statement, a red mark will show

up on the left-margin on that statement. You could click on the "light bulb" to display the error message,

and also select from the available hints for correcting that syntax error.

7. Rename (Refactor) (ctrl-r): To rename a variable, place the cursor on that variable, right-click ⇒

"Refactor" ⇒ "Rename" ⇒ Enter the new name. All the appearances of that variables in the project will be

renamed.

8. Small Programs: You can keep many small toy programs (with main()) in one Java project instead of

create a new project for each small program. To run the desired program, on the "editor" panel ⇒ right-

click ⇒ "Run File".

9. Source Toggle Comment: To temporarily comment-off a block of codes, choose "Source" ⇒

"Toggle Comment".

10. Error Message Hyperlink: Click on an error message will hyperlink to the corresponding source

statement.

11. Command-Line Arguments: To provide command-line arguments to your Java program in

NetBeans, right-click on the "project" ⇒ "Set as Main Project" ⇒ "Set Configurations" ⇒ "Customize..." ⇒

"Run" ⇒ select the "Main" class ⇒ type your command-line arguments inside the "Arguments" field ⇒

choose "Run" menu ⇒ "Run Main Project".

12. Line Numbers: To show the line numbers, right-click on the left-margin ⇒ "Show Line Numbers".

13. Changing Font Face and Size: Tools ⇒ Options ⇒ Fonts & Colors ⇒ In "Category", select "Default"

⇒ In "Font", choose the font face and size.

14. Resetting Window View: If you mess up the window view (e.g., you accidentally close a window and

cannot find it anymore), you can reset the view via "Window" menu ⇒ "Reset Windows".

15. Code Templates: For example, when you create a new Java class, NetBeans retrieves the initial

contents from the "Java Class" code template. To configure code templates, select "Tools" menu ⇒

"Templates" ⇒ Choose the desired template ⇒ "Open in Editor". To set a value of a variable used in the all

the code templates (e.g., $User), select "Tools" menu ⇒ "Templates" ⇒ "Settings".

16. Displaying Chinese Character: Need to choose a font that support chinese character display, such

as "Monospace", in Tools ⇒ Options ⇒ Fonts & Colors ⇒ Syntax ⇒ default.

17. Changing the JDK Location: The Netbeans configuration file is located at

"etc\netbeans.conf". Edit the directive "netbeans_jdkhome".

18. Let me know if you have more tips to be included here.

5.2 Java Application Development

1. Choosing the JDK version for your program: Right-click on your project ⇒ "Properties" ⇒

"Source" node ⇒ You can select the JDK level of your project in pull-donw menu "Source/Binary Format".

2. Enabling JDK 7 support: If JDK 7 is already installed in your system, right-click on your Project ⇒

"Properties" ⇒ "Source" node ⇒ "Source/Binary Format" ⇒ Select "JDK 7". Also check "Libraries" ⇒ Java

149

Platform ⇒ JDK 7.

If JDK 7 is not installed/configured, install JDK 7. Add JDK 7 support to NetBeans via "Tool" menu ⇒ "Java

Platforms" ⇒ "Add Platform...".

3. Choosing Default Charset: Right-click on your project ⇒ "Properties" ⇒ "Source" node ⇒

"Encoding" ⇒ choose your desired charset for the text-file I/O from the pull-down menu.

4. Enabling Unicode Support for File Encoding: Right-click on your project ⇒ "Properties" ⇒

"Source" node ⇒ "Encoding" ⇒ choose your Unicode encoding (e.g., UTF-8, UTF-16, UTF-16LE, UTF-16GE)

for the text-file I/O.

5. To include Javadoc/Source: Use "Library Manager" (select the "Tools" menu ⇒ "Libraries"); or "Java

Platform Manager" (select "Tools" menu ⇒ "Java Platforms")

6. Adding External JAR files & Native Libraries (".dll", ".lib", ".a", ".so"): Many

external Java packages (such as JOGL, Java3D, JAMA, etc) are available to extend the functions of JDK.

These packages typically provide a "lib" directory containing JAR files (".jar") (Java Archive - a single-

file package of Java classes) and native libraries (".dll", ".lib" for windows, ".a", ".so" for Linux and

Mac).

To include an external JAR file (".jar") into a project: Expand the project node ⇒ Right-click on

"Libraries" ⇒ "Add JAR/Folder..." ⇒ Select the desired JAR file or the folder containing the classes.

If the external package contains many JAR files, you could create a user library to contain all the JAR files,

and add the library to all the projects that required these JAR files. From "Tools" menu ⇒ "Libraries" ⇒

"New Library..." ⇒ Enter a library name ⇒ Use "Add JAR/Folder..." to add JAR files into this library.

Many JAR files come with native libraries in the form of ".dll", ".lib" (for Windows) and ".a", ".so" for

Linux/Mac. The directory path of these libraries must be included in JRE's property

"java.library.path". This can be done via right-click the project ⇒ Set Configuration ⇒ Customize...

⇒ Run ⇒ In "VM options", enter "-Djava.library.path=xxx", where xxx is path of the native

libraries.

Notes: The JAR files must be included in the CLASSPATH. The native library directories must be included

in JRE's property "java.library.path", which normally but not necessarily includes all the paths from

the PATH environment variable. Read "External JAR files and Native Libraries".

6. Writing Java GUI (AWT/Swing) Application in NetBeans

Step 0: Read

1. Java GUI Application Learning Trail @ http://www.netbeans.org/kb/trails/matisse.html.

2. Swing Tutorial's "Learning Swing with the NetBeans IDE"

@ http://docs.oracle.com/javase/tutorial/uiswing/learn/index.html.

Step 1: Create a New "Java Application" Project

1. Launch NetBeans ⇒ File ⇒ New Project...

2. Under "Categories", choose "Java" ⇒ Under "Projects", choose "Java Application" ⇒ Next.

3. In "Project Name", enter "FirstNetBeansGUI" ⇒ Choose a suitable directory for your "Project

Location" ⇒ Uncheck the "Create Main class" box ⇒ Finish.

Step 2: Write a Java File "JFrame Form"

1. Right-click on the project "FirstNetBeansGUI" ⇒ "New" ⇒ "JFrame Form..." (or "Others" ⇒ "Swing GUI

Forms" ⇒ "JFrame Form").

2. In "Class Name", enter "NetBeansSwingCounter" ⇒ Finish.

3. Create the GUI Components visually:

a. From the "Platte" panel ⇒ "Swing Controls" ⇒ Drag and drop a "Label", "TextField", and

"Button" into the design panel.

b. Click on the "jLabel1" ⇒ In the "Properties" panel, enter "Count" in "text" (You can also single-

click on the jLabel1 to change the text). Right-click on the jLable1 ⇒ Change Variable Name

⇒ In "New Name", enter "lblCount".

c. Similarly, for "jTextField1" ⇒ Change the "text" to 0, and change the "Variable Name" to

"tfCount" ⇒ Resize the text field if necessary.

d. For "jButton1" ⇒ Change the "text" to "Count", and change the "Variable Name" to

"btnCount".

4. Write the event handler for the button by double-clicking the button and enter the following codes:

https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html#external_jar
http://www.netbeans.org/kb/trails/matisse.html
http://docs.oracle.com/javase/tutorial/uiswing/learn/index.html

150

5. private void btnCountActionPerformed(java.awt.event.ActionEvent evt) {

6. count++;

7. tfCount.setText(count + "");

}

8. Create an instance variable count (just below the class declaration) as follows:

9. public class Counter extends javax.swing.JFrame {

 int count = 0;

Step 3: Compile & Execute

Right-click the source and select "Run File".

Step 4: Study the Generated Source Code

Expand the "Generated Code" and study how the GUI builder declare, allocate and initialize the GUI Components

in the initComponents(). Note how the JButton registers an ActionEvent listener and how an inner class

is used as the listener and provide the event handler actionPerformed(). Also notice that

the main() method uses a Swing's worker to run the GUI on the Event-Dispatcher thread, instead of

the main thread, for thread-safe operations.

public class NetBeansSwingCounter extends javax.swing.JFrame {
 int count = 0;

 // Constructor to setup the UI via initComponents()
 public NetBeansSwingCounter() {
 initComponents();
 }

 private void initComponents() {
 lblCount = new javax.swing.JLabel();
 tfCount = new javax.swing.JTextField();
 btnCount = new javax.swing.JButton();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 lblCount.setText("Counter");
 tfCount.setText("0");

 btnCount.setText("Count");
 // Create an anonymous inner as the listener for the ActionEvent fired by btnCount
 btnCount.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 btnCountActionPerformed(evt);
 }
 });

 // Laying out the components
 //

 pack();
 }

 // ActionEvent handler for btnCount
 private void btnCountActionPerformed(java.awt.event.ActionEvent evt) {
 count++;
 tfCount.setText(count + "");
 }

 public static void main(String args[]) {
 // Setup the Look and Feel
 //

 // Run the constructor on the Event-Dispatcher Thread for thread-safe
 java.awt.EventQueue.invokeLater(new Runnable() {
 public void run() {
 new NetBeansSwingCounter().setVisible(true);
 }
 });

151

 }

 // private variables
 private javax.swing.JButton btnCount;
 private javax.swing.JLabel lblCount;
 private javax.swing.JTextField tfCount;
}

7. NetBeans and MySQL

Reference : "Connecting to a MySQL Database" @ http://netbeans.org/kb/docs/ide/mysql.html.

NetBeans (JavaEE) provides direct support to MySQL server. You can use NetBeans as a GUI client to access a

MySQL server, as well as an administrative tool (e.g., starting and stopping the server).

Configuring NetBeans to Support MySQL

From NetBeans "Window" menu ⇒ Select "Services". The "Services" tab shall appear on the left pane

1. Right-click on the "Databases" node ⇒ "Register MySQL Server". (If you have already registered a MySQL

server, you can right-click on Server node "MySQL Server at hostname:port" ⇒ Properties, to

modify its properties.)

2. Select the "Basic Properties" tab, enter the hostname, port number, root user and password.

3. Select the "Admin Properties" tab:

a. Leave the "Path/URL to admin tool" empty.

b. In "Path to start command", enter "<MYSQL_HOME>\bin\mysqld.exe"; in the "Arguments",

enter "--console"

c. In "Path to stop command", enter "<MYSQL_HOME>\bin\mysqladmin.exe", in the

"Arguments", enter "-u root -ppassword shutdown".

4. A server node "MySQL Server at hostname:port" appears.

Database Administration - Start/Stop the Server and Create Databases

1. You can start the MySQL server by right-clicking on the server node ⇒ select "start". [There seems to be a

problem here. If a "connection refused: connect" error occurs, enter the password again.]

2. Once the MySQL server is started and connected, you can see the list of databases by expanding the

MySQL server node. You can create a new database by right-clicking on it and choose "Create

Database...".

Create a new Connection

You need a connection to manipulate data. You can create multiple connections with different users and default

databases.

1. Right-click on the "Databases" ⇒ "New Connection..." ⇒ Select the driver "MySQL Connector/J" ⇒ Next ⇒

Enter hostname, port number, default database, a general username and password ⇒ "Test Connection"

(make sure that MySQL is started) ⇒ Finish.

2. A connection node "jdbc:mysql://hostname:port/defaultDatabase" appears.

Manipulating Data via a Connection

1. Right-click on a connection node (e.g., "jdbc:mysql://hostname:port/defaultDatabase") ⇒

Choose "Connect" (if not connected, provided that the MySQL server has been started).

2. You can expand the connection node to view all the databases.

3. Expand an existing database. There are three sub-nodes "Tables", "View" and "Procedures". Right-click on

the "Tables" to create table or execute command. Similarly, right-click on the "View" and "Procedures".

4. To view/manipulate the records in a table, right-click on the selected table ⇒ You can choose to "View

Data...", "Execute Command...", etc.

5. You can right-click on the connection to "connect" or "disconnect" from the server.

Create a SQL Script and Run the Script

You can create a SQL script by right-clicking on a project ⇒ New ⇒ "SQL File". You can run the script by right-

clicking on the SQL script ⇒ "Run File" ⇒ Select an existing connection (or create a new connection) to run the

http://netbeans.org/kb/docs/ide/mysql.html

152

script. You could also run a single statement (right-click on the statement ⇒ Run Statement) or a selected group

of statements (highlight the statements ⇒ Right-click ⇒ Run Selection).

8. Developing and Deploying Web Application in NetBeans

Read:

 "Introduction to Developing Web Applications" @ http://netbeans.org/kb/docs/web/quickstart-

webapps.html.

 More articles in "Java EE & Java Web Learning Trail" @ http://netbeans.org/kb/trails/java-ee.html.

8.1 Web (HTTP) Servers

Configuring Web Server

You could configure the web server via "Tools" menu ⇒ "Servers".

Tomcat Server

To configure Tomcat Server, select "Tools" menu ⇒ "Servers" ⇒ click "Add Servers":

1. Choose Server: Select the desired Tomcat version ⇒ Next.

2. Installation and Login Details: In "Server Location", fill in the Tomcat installation directory

($CATALINA_HOME) ⇒ Enter the username/password of a tomcat user with "manager" role. You could

either check the "create user if it does not exist" or define the tomcat user in

"$CATALINA_HOME\conf\tomcat-users.xml" as follows:

3. <tomcat-users>

4. <role rolename="manager"/>

5. <user username="tomcatmanager" password="xxxx" roles="manager,manager-script,admin" />

</tomcat-users>

Running the Web Server

Choose "Services" ⇒ Expand "Servers" node ⇒ Right-click on the desired server ⇒ Start/Stop/Restart.

8.2 MySQL Database Server

You can also manage the MySQL database server directly from Tomcat. Read "NetBeans and MySQL" Section.

8.3 Writing a Hello-World Servlet/JSP Web Application

Create a New Servlet/JSP Project

1. From "File" menu ⇒ choose "New Project...".

2. "Choose Project" ⇒ Under "Categories", choose "Java Web" ⇒ Under "Projects", choose "Web

Application" ⇒ "Next".

3. "Name and Location" ⇒ In "Project Name", enter "HelloServletJSP" ⇒ In "Project Location", select a

suitable directory to save your works ⇒ Check "Set as Main Project" ⇒ Next.

4. "Server and settings" ⇒ Choose your server, or "add" a new server ⇒ Next.

5. "Frameworks" ⇒ Select none for pure servlet/JSP application ⇒ Finish.

Writing a Hello-World JSP

A JSP page called "index.jsp" is automatically created, which says "Hello world!". To execute this JSP, right-

click on the project ⇒ "Run". The URL is http://localhost:8080/HelloServletJSP/index.jsp.

Writing a Hello-World Servlet

1. Right-click on the project "HelloServletJSP" ⇒ New ⇒ Servlet.

2. "Name and Location" ⇒ In "Class Name", enter "HelloServlet" ⇒ In "Package", enter "hello" ⇒ Next.

3. "Configure Servlet Deployment" ⇒ In "Servlet Name", enter "HelloServletExample" ⇒ In "URL

Pattern", enter "sayhello" ⇒ Finish.

4. Enter the following codes for "HelloServlet.java":

5. package hello;

6.

http://netbeans.org/kb/docs/web/quickstart-webapps.html
http://netbeans.org/kb/docs/web/quickstart-webapps.html
http://netbeans.org/kb/trails/java-ee.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/netbeans_howto.html#NetBeansMySQL

153

7. import java.io.IOException;

8. import java.io.PrintWriter;

9. import javax.servlet.ServletException;

10. import javax.servlet.http.HttpServlet;

11. import javax.servlet.http.HttpServletRequest;

12. import javax.servlet.http.HttpServletResponse;

13.

14. public class HelloServlet extends HttpServlet {
15.
16. @Override
17. public void doGet(HttpServletRequest request, HttpServletResponse response)
18. throws IOException, ServletException {
19. // Set the response message's MIME type (in Content-Type response header)
20. response.setContentType("text/html;charset=UTF-8");
21. // Get an output Writer to write the response message over the network
22. PrintWriter out = response.getWriter();
23. // Write the response message (in an HTML page) to display "Hello, world!"
24. try {
25. out.println("<!DOCTYPE html>");
26. out.println("<html>");
27. out.println("<head><title>Hello Servlet</title></head>");
28. out.println("<body><h1>Hello, World (from Java Servlet)!</h1></body>");
29. out.println("</html>");
30. } finally {
31. out.close(); // Always close the output writer
32. }
33. }

}

34. To execute the servlet: Right-click on the project ⇒ run ⇒ Change the URL

to http://localhost:8080/HelloServletJSP/sayhello.

Generating a WAR-file for a Web Application

A WAR (Web Archive) file is basically a zip file for distributing web application in single file. You can use WinZip or

WinRAR to inspect or unzip the war file.

To distribute the project as a war-file, right-click project ⇒ "Clean and Build". The war file is created in the "dist"

directory. You can deploy the web application by dropping the war-file into Tomcat's "webapps" directory.

Tomcat will automatically unzip the war-file and deploy the application upon startup.

Debugging Web Application

The most important reason for using IDE is to use the graphic debugger for debugging the program. You can set

a breakpoint in your server-side Java codes, and "Debug" a web application, similar to a standalone application.

8.4 Writing a Hello-world JSF 2.0 Web Application

Create a New JSF 2.0 Project

1. From "File" menu ⇒ choose "New Project...".

2. "Choose Project" ⇒ Under "Categories", choose "Java Web" ⇒ Under "Projects", choose "Web

Application" ⇒ "Next".

3. "Name and Location" ⇒ In "Project Name", enter "HelloJSF20" ⇒ In "Project Location", select a suitable

directory to save your works ⇒ Check "Set as Main Project" ⇒ Next.

4. "Server and settings" ⇒ Choose your server, or "add" a new server ⇒ Next.

5. "Frameworks" ⇒ Check "JavaServer Faces" ⇒ In "Libraries", "Registered Libraries", select "JSF 2.0" ⇒ Finish.

6. An "index.xhtml" JSF page is generated, as follows:

7. <?xml version='1.0' encoding='UTF-8' ?>

8. <!DOCTYPE html>

9. <html xmlns="http://www.w3.org/1999/xhtml"

10. xmlns:h="http://java.sun.com/jsf/html">

154

11. <h:head>

12. <title>Facelet Title</title>

13. </h:head>

14. <h:body>

15. Hello from Facelets

16. </h:body>

</html>

To run this facelet, right-click on the project ⇒ Run.

Create a new JSF 2.0 Facelet

1. Right-click on the project ⇒ New ⇒ "Other..."

2. "Choose File Type" ⇒ Under "Category", select "JavaServer Faces" ⇒ Under "File Type", select "JSF Page"

⇒ Next.

3. "Name and Location" ⇒ In "File Name", enter "HelloJSF20" ⇒ In "Options", check "Facelets" ⇒ Finish.

4. In "HelloJSF20.xhtml", enter the following codes:

5. <?xml version='1.0' encoding='UTF-8' ?>

6. <!DOCTYPE html>

7. <html xmlns="http://www.w3.org/1999/xhtml"

8. xmlns:h="http://java.sun.com/jsf/html">

9. <h:head>

10. <title>Hello JSF 2.0</title>

11. </h:head>

12. <h:body>

13. <h1>Hello from Facelets</h1>

14. </h:body>

</html>

15. To execute the JSF page, right-click on the project ⇒ Run ⇒ Change the URL

to http://localhost:8080/HelloJSF20/HelloJSF20.xhtml .

8.5 Writing a Hello-world JSF 1.2 Web Application

Create a New JSF 1.2 Project

1. From "File" menu ⇒ choose "New Project...".

2. "Choose Project" ⇒ In "Categories", choose "Java Web" ⇒ In "Projects", choose "Web Application" ⇒

"Next".

3. "Name and Location" ⇒ In "Project Name", enter "HelloJSF12" ⇒ In "Project Location", select a suitable

directory to save your works ⇒ Check "Set as Main Project" ⇒ Next.

4. "Server and settings" ⇒ choose your server, or "add" a new server ⇒ Next.

5. "Frameworks" ⇒ Check "JavaServer Faces" ⇒ In "Libraries", "Registered Libraries", select "JSF 1.2" ⇒ Finish.

6. A "WelcomeJSF.jsp" page is generated, as follows:

7. <%@page contentType="text/html" pageEncoding="UTF-8"%>

8. <%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>

9. <%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>

10. <!DOCTYPE html>

11. <%--
12. This file is an entry point for JavaServer Faces application.
13. --%>
14. <f:view>

155

15. <html>
16. <head>
17. <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
18. <title>JSP Page</title>
19. </head>
20. <body>
21. <h1><h:outputText value="JavaServer Faces"/></h1>
22. </body>
23. </html>

</f:view>

To run this page, right-click on the project ⇒ Run.

Create a new JSF 1.2 Page

1. Right-click on the project ⇒ New ⇒ "Other..."

2. "Choose File Type" ⇒ In "Category", select "JavaServer Faces" ⇒ In "File Type", select "JSF Page" ⇒ Next.

3. "Name and Location" ⇒ In "File Name", enter "HelloJSF12" ⇒ In "Options", check "JSP File (Standard

Syntax)" ⇒ Finish.

4. In "HelloJSF12.jsp", enter the following codes:

5. <%@page contentType="text/html" pageEncoding="UTF-8"%>

6. <%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>

7. <%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>

8. <!DOCTYPE html>

9.

10. <f:view>

11. <html>

12. <head>

13. <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

14. <title>Hello JSF 1.2</title>

15. </head>

16. <body>

17. <h1><h:outputText value="Hello World!"/></h1>

18. </body>

19. </html>

</f:view>

20. To execute the JSF page, right-click on the project ⇒ Run ⇒ Change the URL

to http://localhost:8080/HelloJSF12/faces/HelloJSF12.jsp .

8.6 Debugging Web Applications in NetBeans

You can debug a webapp just like standalone application. For example, you can set breakpoints, single-step

through the programs, etc

 UNIT: 2

JDBC: Java Database Connectivity (JDBC) is an application programming interface (API) for the

programming language Java, which defines how a client may access a database. ... It provides
methods to query and update data in a database, and is oriented towards relational databases.

Fundamental Steps in JDBC
The fundamental steps involved in the process of connecting to a database and executing a query consist of the following:

156

 Import JDBC packages.

 Load and register the JDBC driver.

 Open a connection to the database.

 Create a statement object to perform a query.

 Execute the statement object and return a query resultset.

 Process the resultset.

 Close the resultset and statement objects.

 Close the connection.

These steps are described in detail in the sections that follow.

Import JDBC Packages
This is for making the JDBC API classes immediately available to the application program. The following import statement
should be included in the program irrespective of the JDBC driver being used:

import java.sql.*;

Additionally, depending on the features being used, Oracle-supplied JDBC packages might need to be imported. For example,
the following packages might need to be imported while using the Oracle extensions to JDBC such as using advanced data
types such as BLOB, and so on.

import oracle.jdbc.driver.*;

import oracle.sql.*;

Load and Register the JDBC Driver
This is for establishing a communication between the JDBC program and the Oracle database. This is done by using the

static registerDriver() method of the DriverManager class of the JDBC API. The following line of code does this job:

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

JDBC Driver Registration

For the entire Java application, the JDBC driver is registered only once per each database that needs to be accessed. This is
true even when there are multiple database connections to the same data server.

Alternatively, the forName() method of the java.lang.Class class can be used to load and register the JDBC driver:

157

Class.forName("oracle.jdbc.driver.OracleDriver");

However, the forName() method is valid for only JDK-compliant Java Virtual Machines and implicitly creates an instance of

the Oracle driver, whereas the registerDriver() method does this explicitly.

Connecting to a Database
Once the required packages have been imported and the Oracle JDBC driver has been loaded and registered, a database

connection must be established. This is done by using the getConnection() method of the DriverManager class. A call to

this method creates an object instance of the java.sql.Connection class. The getConnection() requires three input

parameters, namely, a connect string, a username, and a password. The connect string should specify the JDBC driver to be
yes and the database instance to connect to.

The getConnection() method is an overloaded method that takes

 Three parameters, one each for the URL, username, and password.

 Only one parameter for the database URL. In this case, the URL contains the username and password.

The following lines of code illustrate using the getConnection() method:

Connection conn = DriverManager.getConnection(URL, username, passwd);

Connection conn = DriverManager.getConnection(URL);

where URL, username, and passwd are of String data types.

We will discuss the methods of opening a connection using the Oracle JDBC OCI and thin _drivers.

When using the OCI driver, the database can be specified using the TNSNAMES entry in the tnsnames.ora file. For example,
to connect to a database on a particular host as user oratest and password oratest that has a TNSNAMES entry of
oracle.world, use the following code:

Connection conn = DriverManager.getConnection("jdbc:oracle:oci8:

@oracle.world", "oratest", "oratest");

Both the ":" and "@" are mandatory.

When using the JDBC thin driver, the TNSNAMES entry cannot be used to identify the database. There are two ways of
specifying the connect string in this case, namely,

 Explicitly specifying the hostname, the TCP/IP port number, and the Oracle SID of the database to connect to. This is for
thin driver only.

 Specify a Net8 keyword-value pair list.

For example, for the explicit method, use the following code to connect to a database on host training where the TCP/IP

listener is on port 1521, the SID for the database instance is Oracle, the username and password are both oratest:

Connection conn = DriverManager.getConnection

158

 ("jdbc:oracle:thin:@training:1521:Oracle",

 "oratest", "oratest");

For the Net8 keyword-value pair list, use the following:

Connection conn = DriverManager.getConnection

 ("jdbc:oracle:thin@(description=(address=

 (host=training)(protocol=tcp)(port=1521))

 (connect_data=(sid=Oracle))) ", _"oratest", "oratest");

This method can also be used for the JDBC OCI driver. Just specify oci8 instead of thin in the above keyword-value pair list.

Querying the Database
Querying the database involves two steps: first, creating a statement object to perform a query, and second, executing the
query and returning a resultset.

Creating a Statement Object
This is to instantiate objects that run the query against the database connected to. This is done by

the createStatement() method of the conn Connection object created above. A call to this method creates an object

instance of the Statement class. The following line of code illustrates this:

Statement sql_stmt = conn.createStatement();

Executing the Query and Returning a ResultSet
Once a Statement object has been constructed, the next step is to execute the query. This is done by using

the executeQuery() method of the Statement object. A call to this method takes as parameter a SQL SELECT statement

and returns a JDBC ResultSet object. The following line of code illustrates this using the sql_stmt object created above:

ResultSet rset = sql_stmt.executeQuery

 ("SELECT empno, ename, sal, deptno FROM emp ORDER BY ename");

Alternatively, the SQL statement can be placed in a string and then this string passed to the executeQuery() function. This is
shown below.

String sql = "SELECT empno, ename, sal, deptno FROM emp ORDER BY ename";

159

ResultSet rset = sql_stmt.executeQuery(sql);

Statement and ResultSet Objects

Statement and ResultSet objects open a corresponding cursor in the database for SELECT and other DML statements.

The above statement executes the SELECT statement specified in between the double quotes and stores the resulting rows in

an instance of the ResultSet object named rset.

Processing the Results of a Database Query That Returns Multiple Rows
Once the query has been executed, there are two steps to be carried out:

 Processing the output resultset to fetch the rows

 Retrieving the column values of the current row

The first step is done using the next() method of the ResultSet object. A call to next() is executed in a loop to fetch the

rows one row at a time, with each call to next() advancing the control to the next available row. The next() method returns

the Boolean value true while rows are still available for fetching and returns false when all the rows have been fetched.

The second step is done by using the getXXX() methods of the JDBC rset object. Here getXXX() corresponds to

the getInt(), getString() etc with XXX being replaced by a Java datatype.

The following code demonstrates the above steps:

String str;

while (rset.next())

 {

 str = rset.getInt(1)+ " "+ rset.getString(2)+ "

 "+rset.getFloat(3)+ " "rset.getInt(4)+ "\n";

 }

byte buf[] = str.getBytes();

OutputStream fp = new FileOutputStream("query1.lst");

fp.write(buf);

fp.close();

Here the 1, 2, 3, and 4 in rset.getInt(), rset.getString(), getFloat(), and getInt() respectively denote the

position of the columns in the SELECT statement, that is, the first column empno, second column ename, third column sal,

and fourth column deptno of the SELECT statement respectively.

Specifying get() Parameters

160

The parameters for the getXXX() methods can be specified by position of the corresponding columns as numbers 1, 2, and so

on, or by directly specifying the column names enclosed in double quotes, as getString("ename") and so on, or a

combination of both.

Closing the ResultSet and Statement
Once the ResultSet and Statement objects have been used, they must be closed explicitly. This is done by calls to

the close() method of the ResultSet and Statement classes. The following code illustrates this:

rset.close();

sql_stmt.close();

If not closed explicitly, there are two disadvantages:

 Memory leaks can occur

 Maximum Open cursors can be exceeded

Closing the ResultSet and Statement objects frees the corresponding cursor in the database.

Closing the Connection
The last step is to close the database connection opened in the beginning after importing the packages and loading the JDBC

drivers. This is done by a call to the close() method of the Connection class.

The following line of code does this:

conn.close();

Explicitly Close your Connection

Closing the ResultSet and Statement objects does not close the connection. The connection should be closed by explicitly

invoking the close() method of the Connection class.

A complete example of the above procedures using a JDBC thin driver is given below. This program queries the emp table and
writes the output rows to an operating system file.

//Import JDBC package

import java.sql.*;

// Import Java package for File I/O

import java.io.*;

public class QueryExample {

 public static void main (String[] args) throws SQLException, IOException

{

161

 //Load and register Oracle driver

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 //Establish a connection

 Connection conn = DriverManager.getConnection("jdbc:oracle:thin:

 @training:1521:Oracle", "oratest", "oratest");

 //Create a Statement object

 Statement sql_stmt = conn.createStatement();

 //Create a ResultSet object, execute the query and return a

 // resultset

 ResultSet rset = sql_stmt.executeQuery("SELECT empno, ename, sal,

 deptno FROM emp ORDER BY ename");

 //Process the resultset, retrieve data in each row, column by column

 //and write to an operating system file

String str = "";

while (rset.next())

 {

 str += rset.getInt(1)+" "+ rset.getString(2)+" "+

 rset.getFloat(3)+" "+rset.getInt(4)+"\n";

 }

 byte buf[] = str.getBytes();

OutputStream fp = new FileOutputStream("query1.lst");

162

fp.write(buf);

fp.close();

//Close the ResultSet and Statement

 rset.close();

 sql_stmt.close();

 //Close the database connection

 conn.close();

 }

}

Processing the Results of a Database Query That Returns a Single Row
The above sections and the complete example explained the processing of a query that returned multiple rows. This section
highlights the processing of a single-row query and explains how to write code that is the analogue of the PL/SQL

exception NO_DATA_FOUND.
NO DATA FOUND Exception

NO_DATA_FOUND exception in PL/SQL is simulated in JDBC by using the return value of the next() method of

the ResultSet object. A value of false returned by the next() method identifies a NO_DATA_FOUND exception.

Consider the following code (this uses the ResultSet object rset defined in the above sections):

if (rset.next())

 // Process the row returned

else

 System.out.println("The Employee with Empno "+ args[1] +

 "does not exist");

Instead of the while loop used earlier, an if statement is used to determine whether the SELECT statement returned a row or
not.

Datatype Mappings

163

Corresponding to each SQL data type, there exist mappings to the corresponding JDBC Types, standard Java types, and the
Java types provided by Oracle extensions. These are required to be used in JDBC programs that manipulate data and data
structures based on these types.

There are four categories of Data types any of which can be mapped to the others. These are:

 SQL Data types—These are Oracle SQL data types that exist in the database.

 JDBC Typecodes—These are the data typecodes supported by JDBC as defined in the java.sql.Types class or

defined by Oracle in oracle.jdbc.driver.OracleTypes class.

 Java Types—These are the standard types defined in the Java language.

 Oracle Extension Java Types—These are the Oracle extensions to the SQL data types and are defined in

the oracle.sql.* class. Mapping SQL data types to the oracle.sql.* Java types enables storage and retrieval of

SQL data without first converting into Java format thus preventing any loss of information.
Table 3.1 lists the default mappings existing between these four different types.

Table 3.1 Standard and Oracle-specific SQL-Java Data Type Mappings

SQL Data
types

JDBC Type codes Standard Java
Types

Oracle Extension Java _
Types

Standard JDBC 1.0 Types

CHAR java.sql.Types.CHAR java.lang.String oracle.sql.CHAR

VARCHAR2 java.sql.Types.VARCHAR java.lang.String oracle.sql.CHAR

LONG java.sql.Types.
LONGVARCHAR

java.lang.String oracle.sql.CHAR_

NUMBER java.sql.Types.NUMERIC java.math.BigDecim
al

oracle.sql.NUMBER

NUMBER java.sql.Types.DECIMAL java.math.BigDecim
al

oracle.sql.NUMBER

NUMBER java.sql.Types.BIT Boolean oracle.sql.NUMBER

NUMBER java.sql.Types.TINYINT byte oracle.sql.NUMBER

NUMBER java.sql.Types.SMALLINT short oracle.sql.NUMBER

NUMBER java.sql.Types.INTEGER int oracle.sql.NUMBER

NUMBER java.sql.Types.BIGINT long oracle.sql.NUMBER

164

SQL Data
types

JDBC Type codes Standard Java
Types

Oracle Extension Java _
Types

NUMBER java.sql.Types.REAL float oracle.sql.NUMBER

NUMBER java.sql.Types.FLOAT double oracle.sql.NUMBER

NUMBER java.sql.Types.DOUBLE double oracle.sql.NUMBER

RAW java.sql.Types.BINARY byte[] oracle.sql.RAW

RAW java.sql.Types.VARBINARY byte[] oracle.sql.RAW

LONGRAW java.sql.Types.LONGVARBINA
RY

byte[] oracle.sql.RAW

DATE java.sql.Types.DATE java.sql.Date oracle.sql.DATE

DATE java.sql.Types.TIME java.sql.Time oracle.sql.DATE

DATE java.sql.Types.TIMESTAMP javal.sql.Timestamp oracle.sql.DATE

Standard JDBC 2.0 Types

BLOB java.sql.Types.BLOB java.sql.Blob Oracle.sql.BLOB

CLOB Java.sql.Types.CLOB java.sql.Clob oracle.sql.CLOB

user-defined java.sql.Types.STRUCT java.sql.Struct oracle.sql.STRUCT_object

user-defined java.sql.Types.REF java.sql.Ref oracle.sql.REF_reference

user-defined java.sql.Types.ARRAY java.sql.Array oracle.sql.ARRAY_collecti
on

Oracle Extensions

BFILE oracle.jdbc.driver. n/a OracleTypes.BFILE

165

SQL Data
types

JDBC Type codes Standard Java
Types

Oracle Extension Java _
Types

oracle.sql.BFILE_

ROWID oracle.jdbc.driver.
oracle.sql.ROWID_

n/a OracleTypes.ROWID

REFCURSO
R type

oracle.jdbc.driver.
OracleTypes.CURSOR

java.sql.ResultSet oracle.jdbc.driver._

OracleResultSet

Exception Handling in JDBC
Like in PL/SQL programs, exceptions do occur in JDBC programs. Notice how the NO_DATA_FOUND exception was simulated

in the earlier section "Processing the Results of a Database Query That Returns a Single Row."
Exceptions in JDBC are usually of two types:

 Exceptions occurring in the JDBC driver

 Exceptions occurring in the Oracle 8i database itself

Just as PL/SQL provides for an implicit or explicit RAISE statement for an exception, Oracle JDBC programs have

a throw statement that is used to inform that JDBC calls throw the SQL exceptions. This is shown below.

throws SQLException

This creates instances of the class java.sql.SQLException or a subclass of it.

And, like in PL/SQL, SQL exceptions in JDBC have to be handled explicitly. Similar to PL/SQL exception handling sections,

Java provides a try..catch section that can handle all exceptions including SQL exceptions. Handling an exception can

basically include retrieving the error code, error text, the SQL state, and/or printing the error stack trace.

The SQLException class provides methods for obtaining all of this information in case of error conditions.

Retrieving Error Code, Error Text, and SQL State
There are the methods getErrorCode() and getMessage() similar to the functions SQLCODE and SQLERRM in PL/SQL. To

retrieve the SQL state, there is the method getSQLState(). A brief description of these methods is given below:

 getErrorCode()

 This function returns the five-digit ORA number of the error in case of exceptions occurring in the JDBC driver as well as
in the database.

 getMessage()

 This function returns the error message text in case of exceptions occurring in the JDBC driver. For exceptions occurring
in the database, this function returns the error message text prefixed with the ORA number.

 getSQLState()

 This function returns the five digit code indicating the SQL state only for exceptions occurring in the database.

The following code illustrates the use of exception handlers in JDBC:

166

try { <JDBC code> }

catch (SQLException e) { System.out.println("ERR: "+ e.getMessage())}

We now show the QueryExample class of the earlier section with complete exception handlers built in it. The code is as

follows:

//Import JDBC package

import java.sql.*;

// Import Java package for File I/O

import java.io.*;

public class QueryExample {

 public static void main (String[] args) {

 int ret_code;

 try {

 //Load and register Oracle driver

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 //Establish a connection

 Connection conn = DriverManager.getConnection("jdbc:oracle:thin:

 @training:1521:Oracle", "oratest", "oratest");

 //Create a Statement object

 Statement sql_stmt = conn.createStatement();

 //Create a ResultSet object, execute the query and return a

 // resultset

167

 ResultSet rset = sql_stmt.executeQuery("SELECT empno, ename, sal,

 deptno FROM emp ORDER BY ename");

 //Process the resultset, retrieve data in each row, column by column

 // and write to an operating system file

String str = "";

while (rset.next())

 {

 str += rset.getInt(1)+" "+ rset.getString(2)+" "+rset.getFloat(3)+

 " "+rset.getInt(4)+"\n";

 }

 byte buf[] = str.getBytes();

OutputStream fp = new FileOutputStream("query1.lst");

fp.write(buf);

fp.close();

//Close the ResultSet and Statement

 rset.close();

 sql_stmt.close();

 //Close the database connection

 conn.close();

} catch (SQLException e) {ret_code = e.getErrorCode();

 System.err.println("Oracle Error: "+ ret_code + e.getMessage());}

168

 catch (IOException e) {System.out.println("Java Error: "+

 e.getMessage()); }

 }

}

Printing Error Stack Trace
The SQLException has the method printStackTrace() for printing an error stack trace. This method prints the stack trace

of the throwable object to the standard error stream.
The following code illustrates this:

catch (SQLException e) { e.printStackTrace(); }

JAVABEANS:

1. How to Install NetBeans 8.2

1.1 How to Install NetBeans on Windows

Step 0: Install JDK

To use NetBeans for Java programming, you need to first install Java Development Kit (JDK). See "JDK - How to

Install".

Step 1: Download

Download "NetBeans IDE" installer from http://netbeans.org/downloads/index.html. There are many "bundles"

available. For beginners, choose the 1st entry "Java SE" (e.g., "netbeans-8.2-javase-windows.exe" 95MB).

Step 2: Run the Installer

Run the downloaded installer.

1.2 How to Install NetBeans on Mac OS X

To use NetBeans for Java programming, you need to first install JDK. Read "How to install JDK on Mac".

To install NetBeans:

5. Download NetBeans from http://netbeans.org/downloads/. Set "Platform" to "Mac OS X". There are many

"bundles" available. For beginners, choose "Java SE" (e.g., "netbeans-8.2-javase-macosx.dmg"

116MB).

6. Double-click the download Disk Image (DMG) file.

7. Double-click the "NetBeans 8.x.mpkg", and follow the instructions to install NetBeans. NetBeans will

be installed under "/Applications/NetBeans".

8. Eject the Disk Image (".dmg").

You can launch NetBeans from the "Applications".

Notes: To uninstall NetBeans, drag the "/Applications/NetBeans" folder to trash.

1.3 How to Install NetBeans on Ubuntu Linux

To use NetBeans for Java programming, you need to first install JDK. Read "How to install JDK on Ubuntu".

https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html
http://netbeans.org/downloads/index.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html#jdk_mac
http://netbeans.org/downloads/
https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html#jdk_ubuntu

169

To install NetBeans:

5. Download NetBeans from http://netbeans.org/downloads/. Choose platform "Linux (x86/x64)" ⇒ "Java

SE". You shall receive a sh file (e.g., "netbeans-7.x-ml-javase-linux.sh") in "~/Downloads".

6. Set the downloaded sh file to executable and run the sh file. Open a Terminal:

7. $ cd ~/Downloads
8. $ chmod a+x netbeans-7.x-ml-javase-linux.sh // Set to executable for all (a+x)

$./netbeans-7.x-ml-javase-linux.sh // Run

Follow the instructions to install NetBeans.

To start NetBeans, run the script "netbeans" in the NetBeans' bin directory:

$ cd netbeans-bin-directory
$./netbeans

2. Writing a Hello-world Java Program in NetBeans

Step 0: Launch NetBeans

Launch NetBeans. If the "Start Page" appears, close it by clicking the "cross" button next to the "Start Page" title.

Step 1: Create a New Project

For each Java application, you need to create a "project" to keep all the source files, classes and relevant

resources.

4. From "File" menu ⇒ Choose "New Project...".

5. The "Choose Project" diglog pops up ⇒ Under "Categories", choose "Java" ⇒ Under "Projects", choose

"Java Application" ⇒ "Next".

6. The "Name and Location" dialog pops up ⇒ Under "Project Name", enter "FirstProject" ⇒ In "Project

Location", select a suitable directory to save your works ⇒ Uncheck "Use Dedicated Folder for Storing

Libraries" ⇒ Uncheck "Create Main class" ⇒ Finish.

Step 2: Write a Hello-world Java Program

8. Right-click on "FirstProject" ⇒ New ⇒ Java Class (OR choose the "File" menu ⇒ "New File..." ⇒

Categories: "Java", File Types: "Java Class" ⇒ "Next").

9. The "Name and Location" dialog pops up ⇒ In "Class Name", enter "Hello" ⇒ Delete the content in

"Package" if it is not empty ⇒ "Finish".

10. The source file "Hello.java" appears in the editor panel. Enter the following codes:

11. public class Hello {
12. public static void main(String[] args) {
13. System.out.println("Hello, world");
14. }

}

Step 3: Compile & Execute

There is no need to "compile" the source code in NetBeans explicitly, as NetBeans performs the so-

called incremental compilation (i.e., the source statement is compiled as and when it is entered).

To run the program, right-click anywhere in the source (or from the "Run" menu) ⇒ Run File. Observe the output

on the output console.

Notes:

 You should create a NEW Java project for EACH of your Java application.

 Nonetheless, NetBeans allows you to keep more than one programs in a project, which is handy for writing

toy programs (such as your tutorial exercises). To run a particular program, open and right-click on the

source file ⇒ Run File.

2.1 Correcting Syntax Error

NetBeans performs incremented compilation, as and when a source line is entered. It marked a source line with

syntax error with a RED CROSS. Point your cursor at the RED CROSS to view the error message.

http://netbeans.org/downloads/

170

You CANNOT RUN the program if there is any syntax error (marked by a RED CROSS before the filename). Correct

all the syntax errors; and RUN the program.

[TODO] Diagram

HINTS: In some cases, NetBeans shows a ORANGE LIGHT-BULB (for HINTS) next to the ERROR RED-CROSS (Line 5

in the above diagram). You can click on the LIGHT-BULB to get a list of HINTS to resolve this particular error,

which may or may not work!

SYNTAX WARNING: marked by a orange triangular exclaimation sign. Unlike errors, warnings may or may not

cause problems. Try to fix these warnings as well. But you can RUN your program with warnings.

3. Read the NetBeans Documentation

At a minimum, you SHOULD READ the "IDE Basics, Getting Started, Java Application", which is accessible via

NetBeans's "HELP" menu ⇒ Help Contents. This will save you many agonizing hours trying to figure out how to

do somethings later.

The "Help" ⇒ "Online Doc and Support" (@ http://netbeans.org/kb/index.html) contains many articles and

tutorial on using NetBeans.

The NetBeans "Start Page" also provides many useful links to get you started.

4. Debugging Program in NetBeans

Step 0: Write a Java Program

The following program computes and prints the factorial of n (=1*2*3*...*n). The program, however, has a

logical error and produce a wrong answer for n=20 ("The Factorial of 20 is -2102132736" - a

negative number?!).

1
2
3
4
5
6
7
8
9
10
11
12
13
14

/** Compute the factorial of n */
public class Factorial {
 // Print factorial of n
 public static void main(String[] args) {
 int n = 20;
 int factorial = 1;

 // n! = 1*2*3...*n
 for (int i = 1; i <= n; i++) {
 factorial *= i;
 }
 System.out.println("The Factorial of " + n + " is " + factorial);
 }
}

Let us use the graphic debugger to debug the program.

Step 1: Set an initial Breakpoint

A breakpoint suspends program execution for you to examine the internal states of the program. Before starting

the debugger, you need to set at least one breakpoint to suspend the execution inside the program. Set a

breakpoint at main() method by clicking on the left-margin of the line containing main(). A red circle or an

inverted Triangle appears in the left-margin indicating a breakpoint is set at that line.

Step 2: Start Debugging

Right click anywhere on the source code ⇒ "Debug File". The program begins execution but suspends its

operation at the breakpoint, i.e., the main() method.

As illustrated in the following diagram, the highlighted line (also pointed to by a green arrow) indicates the

statement to be executed in the next step.

http://netbeans.org/kb/index.html

171

Step 3: Step-Over and Watch the Variables and Outputs

Click the "Step Over" button (or select "Step Over" in "Debug" menu) to single-step thru your program. At each of

the step, examine the value of the variables (in the "Variable" panel) and the outputs produced by your program

(in the "Output" Panel), if any. You can also place your cursor at any variable to inspect the content of the

variable.

Single-stepping thru the program and watching the values of internal variables and the outputs produced is

the ultimate mean in debugging programs - because it is exactly how the computer runs your program!

Step 4: Breakpoint, Run-To-Cursor, Continue and Finish

As mentioned, a breakpoint suspends program execution and let you examine the internal states of the program.

To set a breakpoint on a particular statement, click on the left-margin of that line (or select "Toggle Breakpoint"

from "Run" menu).

"Continue" resumes the program execution, up to the next breakpoint, or till the end of the program.

"Single-step" thru a loop with a large count is time-consuming. You could set a breakpoint at the statement

immediately outside the loop (e.g., Line 11 of the above program), and issue "Continue" to complete the loop.

Alternatively, you can place the cursor on a particular statement, and issue "Run-To-Cursor" to resume execution

up to the line.

"Finish" ends the debugging session. Always terminate your current debugging session using "Finish" or

"Continue" till the end of the program.

4.1 Other Debugger's Features:

Modify the Value of a Variable

You can modify the value of a variable by entering a new value in the "Variable" panel. This is handy for

temporarily modifying the behaviour of a program, without changing the source code.

Step-Into and Step-Out

To debug a method, you need to use "Step-Into" to step into the first statement of the method. You could use

"Step-Out" to return back to the caller, anywhere within the method. Alternatively, you could set a breakpoint

inside a method.

5. NetBeans - Tips & Tricks

5.1 General Usage

These are the features that I find to be most useful in NetBeans:

19. Maximizing Window (double-click): You can double-click on the "header" of any panel

to maximize that particular panel, and double-click again to restore it back. This is particularly useful for

editing source code in full panel.

20. Code Auto-Complete (or Intelli-Sense) (ctrl-space): Enter a partial statement (e.g., Sys) and

press control-space to activate the auto-complete, which displays all the available choices.

21. Javadoc (ctrl-space, alt-F1): Place the cursor on a method or class, and press ctrl-space to view

the javadoc; or right-click ⇒ Show Javadoc (alt-F1) to open it on a browser.

22. Code Shorthand (tab): For example, you can enter "sout" and press TAB for

"System.out.println"; "psvm" for "public static void main(String[] args) { }" or

"fori" + tab for a for-loop. To view and configure code template, choose "Tools" menu ⇒ "Options" ⇒

"Editor" ⇒ "Code Templates".

23. Formatting Source Code (alt-shift-f): Right-click on the source (or from the "Source" menu) ⇒

Choose "Format". NetBeans will layout your source codes with the proper indents and format. To

configure the formatting, choose "Tools" menu ⇒ "Options" ⇒ "Editor" ⇒ "Formatting".

You can also select the section of codes to be formatted, instead of the entire file.

24. Hints for Correcting Syntax Error: If there is a syntax error on a statement, a red mark will show

up on the left-margin on that statement. You could click on the "light bulb" to display the error message,

and also select from the available hints for correcting that syntax error.

172

25. Rename (Refactor) (ctrl-r): To rename a variable, place the cursor on that variable, right-click ⇒

"Refactor" ⇒ "Rename" ⇒ Enter the new name. All the appearances of that variables in the project will be

renamed.

26. Small Programs: You can keep many small toy programs (with main()) in one Java project instead of

create a new project for each small program. To run the desired program, on the "editor" panel ⇒ right-

click ⇒ "Run File".

27. Source Toggle Comment: To temporarily comment-off a block of codes, choose "Source" ⇒

"Toggle Comment".

28. Error Message Hyperlink: Click on an error message will hyperlink to the corresponding source

statement.

29. Command-Line Arguments: To provide command-line arguments to your Java program in

NetBeans, right-click on the "project" ⇒ "Set as Main Project" ⇒ "Set Configurations" ⇒ "Customize..." ⇒

"Run" ⇒ select the "Main" class ⇒ type your command-line arguments inside the "Arguments" field ⇒

choose "Run" menu ⇒ "Run Main Project".

30. Line Numbers: To show the line numbers, right-click on the left-margin ⇒ "Show Line Numbers".

31. Changing Font Face and Size: Tools ⇒ Options ⇒ Fonts & Colors ⇒ In "Category", select "Default"

⇒ In "Font", choose the font face and size.

32. Resetting Window View: If you mess up the window view (e.g., you accidentally close a window and

cannot find it anymore), you can reset the view via "Window" menu ⇒ "Reset Windows".

33. Code Templates: For example, when you create a new Java class, NetBeans retrieves the initial

contents from the "Java Class" code template. To configure code templates, select "Tools" menu ⇒

"Templates" ⇒ Choose the desired template ⇒ "Open in Editor". To set a value of a variable used in the all

the code templates (e.g., $User), select "Tools" menu ⇒ "Templates" ⇒ "Settings".

34. Displaying Chinese Character: Need to choose a font that support chinese character display, such

as "Monospace", in Tools ⇒ Options ⇒ Fonts & Colors ⇒ Syntax ⇒ default.

35. Changing the JDK Location: The Netbeans configuration file is located at

"etc\netbeans.conf". Edit the directive "netbeans_jdkhome".

36. Let me know if you have more tips to be included here.

5.2 Java Application Development

7. Choosing the JDK version for your program: Right-click on your project ⇒ "Properties" ⇒

"Source" node ⇒ You can select the JDK level of your project in pull-donw menu "Source/Binary Format".

8. Enabling JDK 7 support: If JDK 7 is already installed in your system, right-click on your Project ⇒

"Properties" ⇒ "Source" node ⇒ "Source/Binary Format" ⇒ Select "JDK 7". Also check "Libraries" ⇒ Java

Platform ⇒ JDK 7.

If JDK 7 is not installed/configured, install JDK 7. Add JDK 7 support to NetBeans via "Tool" menu ⇒ "Java

Platforms" ⇒ "Add Platform...".

9. Choosing Default Charset: Right-click on your project ⇒ "Properties" ⇒ "Source" node ⇒

"Encoding" ⇒ choose your desired charset for the text-file I/O from the pull-down menu.

10. Enabling Unicode Support for File Encoding: Right-click on your project ⇒ "Properties" ⇒

"Source" node ⇒ "Encoding" ⇒ choose your Unicode encoding (e.g., UTF-8, UTF-16, UTF-16LE, UTF-16GE)

for the text-file I/O.

11. To include Javadoc/Source: Use "Library Manager" (select the "Tools" menu ⇒ "Libraries"); or "Java

Platform Manager" (select "Tools" menu ⇒ "Java Platforms")

12. Adding External JAR files & Native Libraries (".dll", ".lib", ".a", ".so"): Many

external Java packages (such as JOGL, Java3D, JAMA, etc) are available to extend the functions of JDK.

These packages typically provide a "lib" directory containing JAR files (".jar") (Java Archive - a single-

file package of Java classes) and native libraries (".dll", ".lib" for windows, ".a", ".so" for Linux and

Mac).

To include an external JAR file (".jar") into a project: Expand the project node ⇒ Right-click on

"Libraries" ⇒ "Add JAR/Folder..." ⇒ Select the desired JAR file or the folder containing the classes.

If the external package contains many JAR files, you could create a user library to contain all the JAR files,

and add the library to all the projects that required these JAR files. From "Tools" menu ⇒ "Libraries" ⇒

"New Library..." ⇒ Enter a library name ⇒ Use "Add JAR/Folder..." to add JAR files into this library.

Many JAR files come with native libraries in the form of ".dll", ".lib" (for Windows) and ".a", ".so" for

Linux/Mac. The directory path of these libraries must be included in JRE's property

173

"java.library.path". This can be done via right-click the project ⇒ Set Configuration ⇒ Customize...

⇒ Run ⇒ In "VM options", enter "-Djava.library.path=xxx", where xxx is path of the native

libraries.

Notes: The JAR files must be included in the CLASSPATH. The native library directories must be included

in JRE's property "java.library.path", which normally but not necessarily includes all the paths from

the PATH environment variable. Read "External JAR files and Native Libraries".

6. Writing Java GUI (AWT/Swing) Application in NetBeans

Step 0: Read

3. Java GUI Application Learning Trail @ http://www.netbeans.org/kb/trails/matisse.html.

4. Swing Tutorial's "Learning Swing with the NetBeans IDE"

@ http://docs.oracle.com/javase/tutorial/uiswing/learn/index.html.

Step 1: Create a New "Java Application" Project

4. Launch NetBeans ⇒ File ⇒ New Project...

5. Under "Categories", choose "Java" ⇒ Under "Projects", choose "Java Application" ⇒ Next.

6. In "Project Name", enter "FirstNetBeansGUI" ⇒ Choose a suitable directory for your "Project

Location" ⇒ Uncheck the "Create Main class" box ⇒ Finish.

Step 2: Write a Java File "JFrame Form"

10. Right-click on the project "FirstNetBeansGUI" ⇒ "New" ⇒ "JFrame Form..." (or "Others" ⇒ "Swing GUI

Forms" ⇒ "JFrame Form").

11. In "Class Name", enter "NetBeansSwingCounter" ⇒ Finish.

12. Create the GUI Components visually:

a. From the "Platte" panel ⇒ "Swing Controls" ⇒ Drag and drop a "Label", "TextField", and

"Button" into the design panel.

b. Click on the "jLabel1" ⇒ In the "Properties" panel, enter "Count" in "text" (You can also single-

click on the jLabel1 to change the text). Right-click on the jLable1 ⇒ Change Variable Name

⇒ In "New Name", enter "lblCount".

c. Similarly, for "jTextField1" ⇒ Change the "text" to 0, and change the "Variable Name" to

"tfCount" ⇒ Resize the text field if necessary.

d. For "jButton1" ⇒ Change the "text" to "Count", and change the "Variable Name" to

"btnCount".

13. Write the event handler for the button by double-clicking the button and enter the following codes:

14. private void btnCountActionPerformed(java.awt.event.ActionEvent evt) {

15. count++;

16. tfCount.setText(count + "");

}

17. Create an instance variable count (just below the class declaration) as follows:

18. public class Counter extends javax.swing.JFrame {

 int count = 0;

Step 3: Compile & Execute

Right-click the source and select "Run File".

Step 4: Study the Generated Source Code

Expand the "Generated Code" and study how the GUI builder declare, allocate and initialize the GUI Components

in the initComponents(). Note how the JButton registers an ActionEvent listener and how an inner class

is used as the listener and provide the event handler actionPerformed(). Also notice that

the main() method uses a Swing's worker to run the GUI on the Event-Dispatcher thread, instead of

the main thread, for thread-safe operations.

public class NetBeansSwingCounter extends javax.swing.JFrame {
 int count = 0;

https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html#external_jar
http://www.netbeans.org/kb/trails/matisse.html
http://docs.oracle.com/javase/tutorial/uiswing/learn/index.html

174

 // Constructor to setup the UI via initComponents()
 public NetBeansSwingCounter() {
 initComponents();
 }

 private void initComponents() {
 lblCount = new javax.swing.JLabel();
 tfCount = new javax.swing.JTextField();
 btnCount = new javax.swing.JButton();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 lblCount.setText("Counter");
 tfCount.setText("0");

 btnCount.setText("Count");
 // Create an anonymous inner as the listener for the ActionEvent fired by btnCount
 btnCount.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 btnCountActionPerformed(evt);
 }
 });

 // Laying out the components
 //

 pack();
 }

 // ActionEvent handler for btnCount
 private void btnCountActionPerformed(java.awt.event.ActionEvent evt) {
 count++;
 tfCount.setText(count + "");
 }

 public static void main(String args[]) {
 // Setup the Look and Feel
 //

 // Run the constructor on the Event-Dispatcher Thread for thread-safe
 java.awt.EventQueue.invokeLater(new Runnable() {
 public void run() {
 new NetBeansSwingCounter().setVisible(true);
 }
 });
 }

 // private variables
 private javax.swing.JButton btnCount;
 private javax.swing.JLabel lblCount;
 private javax.swing.JTextField tfCount;
}

7. NetBeans and MySQL

Reference : "Connecting to a MySQL Database" @ http://netbeans.org/kb/docs/ide/mysql.html.

NetBeans (JavaEE) provides direct support to MySQL server. You can use NetBeans as a GUI client to access a

MySQL server, as well as an administrative tool (e.g., starting and stopping the server).

Configuring NetBeans to Support MySQL

From NetBeans "Window" menu ⇒ Select "Services". The "Services" tab shall appear on the left pane

5. Right-click on the "Databases" node ⇒ "Register MySQL Server". (If you have already registered a MySQL

server, you can right-click on Server node "MySQL Server at hostname:port" ⇒ Properties, to

modify its properties.)

6. Select the "Basic Properties" tab, enter the hostname, port number, root user and password.

7. Select the "Admin Properties" tab:

a. Leave the "Path/URL to admin tool" empty.

http://netbeans.org/kb/docs/ide/mysql.html

175

b. In "Path to start command", enter "<MYSQL_HOME>\bin\mysqld.exe"; in the "Arguments",

enter "--console"

c. In "Path to stop command", enter "<MYSQL_HOME>\bin\mysqladmin.exe", in the

"Arguments", enter "-u root -ppassword shutdown".

8. A server node "MySQL Server at hostname:port" appears.

Database Administration - Start/Stop the Server and Create Databases

3. You can start the MySQL server by right-clicking on the server node ⇒ select "start". [There seems to be a

problem here. If a "connection refused: connect" error occurs, enter the password again.]

4. Once the MySQL server is started and connected, you can see the list of databases by expanding the

MySQL server node. You can create a new database by right-clicking on it and choose "Create

Database...".

Create a new Connection

You need a connection to manipulate data. You can create multiple connections with different users and default

databases.

3. Right-click on the "Databases" ⇒ "New Connection..." ⇒ Select the driver "MySQL Connector/J" ⇒ Next ⇒

Enter hostname, port number, default database, a general username and password ⇒ "Test Connection"

(make sure that MySQL is started) ⇒ Finish.

4. A connection node "jdbc:mysql://hostname:port/defaultDatabase" appears.

Manipulating Data via a Connection

6. Right-click on a connection node (e.g., "jdbc:mysql://hostname:port/defaultDatabase") ⇒

Choose "Connect" (if not connected, provided that the MySQL server has been started).

7. You can expand the connection node to view all the databases.

8. Expand an existing database. There are three sub-nodes "Tables", "View" and "Procedures". Right-click on

the "Tables" to create table or execute command. Similarly, right-click on the "View" and "Procedures".

9. To view/manipulate the records in a table, right-click on the selected table ⇒ You can choose to "View

Data...", "Execute Command...", etc.

10. You can right-click on the connection to "connect" or "disconnect" from the server.

Create a SQL Script and Run the Script

You can create a SQL script by right-clicking on a project ⇒ New ⇒ "SQL File". You can run the script by right-

clicking on the SQL script ⇒ "Run File" ⇒ Select an existing connection (or create a new connection) to run the

script. You could also run a single statement (right-click on the statement ⇒ Run Statement) or a selected group

of statements (highlight the statements ⇒ Right-click ⇒ Run Selection).

8. Developing and Deploying Web Application in NetBeans

Read:

 "Introduction to Developing Web Applications" @ http://netbeans.org/kb/docs/web/quickstart-

webapps.html.

 More articles in "Java EE & Java Web Learning Trail" @ http://netbeans.org/kb/trails/java-ee.html.

8.1 Web (HTTP) Servers

Configuring Web Server

You could configure the web server via "Tools" menu ⇒ "Servers".

Tomcat Server

To configure Tomcat Server, select "Tools" menu ⇒ "Servers" ⇒ click "Add Servers":

6. Choose Server: Select the desired Tomcat version ⇒ Next.

7. Installation and Login Details: In "Server Location", fill in the Tomcat installation directory

($CATALINA_HOME) ⇒ Enter the username/password of a tomcat user with "manager" role. You could

either check the "create user if it does not exist" or define the tomcat user in

"$CATALINA_HOME\conf\tomcat-users.xml" as follows:

http://netbeans.org/kb/docs/web/quickstart-webapps.html
http://netbeans.org/kb/docs/web/quickstart-webapps.html
http://netbeans.org/kb/trails/java-ee.html

176

8. <tomcat-users>

9. <role rolename="manager"/>

10. <user username="tomcatmanager" password="xxxx" roles="manager,manager-script,admin" />

</tomcat-users>

Running the Web Server

Choose "Services" ⇒ Expand "Servers" node ⇒ Right-click on the desired server ⇒ Start/Stop/Restart.

8.2 MySQL Database Server

You can also manage the MySQL database server directly from Tomcat. Read "NetBeans and MySQL" Section.

8.3 Writing a Hello-World Servlet/JSP Web Application

Create a New Servlet/JSP Project

6. From "File" menu ⇒ choose "New Project...".

7. "Choose Project" ⇒ Under "Categories", choose "Java Web" ⇒ Under "Projects", choose "Web

Application" ⇒ "Next".

8. "Name and Location" ⇒ In "Project Name", enter "HelloServletJSP" ⇒ In "Project Location", select a

suitable directory to save your works ⇒ Check "Set as Main Project" ⇒ Next.

9. "Server and settings" ⇒ Choose your server, or "add" a new server ⇒ Next.

10. "Frameworks" ⇒ Select none for pure servlet/JSP application ⇒ Finish.

Writing a Hello-World JSP

A JSP page called "index.jsp" is automatically created, which says "Hello world!". To execute this JSP, right-

click on the project ⇒ "Run". The URL is http://localhost:8080/HelloServletJSP/index.jsp.

Writing a Hello-World Servlet

35. Right-click on the project "HelloServletJSP" ⇒ New ⇒ Servlet.

36. "Name and Location" ⇒ In "Class Name", enter "HelloServlet" ⇒ In "Package", enter "hello" ⇒ Next.

37. "Configure Servlet Deployment" ⇒ In "Servlet Name", enter "HelloServletExample" ⇒ In "URL

Pattern", enter "sayhello" ⇒ Finish.

38. Enter the following codes for "HelloServlet.java":

39. package hello;

40.

41. import java.io.IOException;

42. import java.io.PrintWriter;

43. import javax.servlet.ServletException;

44. import javax.servlet.http.HttpServlet;

45. import javax.servlet.http.HttpServletRequest;

46. import javax.servlet.http.HttpServletResponse;

47.

48. public class HelloServlet extends HttpServlet {
49.
50. @Override
51. public void doGet(HttpServletRequest request, HttpServletResponse response)
52. throws IOException, ServletException {
53. // Set the response message's MIME type (in Content-Type response header)
54. response.setContentType("text/html;charset=UTF-8");
55. // Get an output Writer to write the response message over the network
56. PrintWriter out = response.getWriter();
57. // Write the response message (in an HTML page) to display "Hello, world!"
58. try {
59. out.println("<!DOCTYPE html>");
60. out.println("<html>");
61. out.println("<head><title>Hello Servlet</title></head>");
62. out.println("<body><h1>Hello, World (from Java Servlet)!</h1></body>");
63. out.println("</html>");
64. } finally {

https://www3.ntu.edu.sg/home/ehchua/programming/howto/netbeans_howto.html#NetBeansMySQL

177

65. out.close(); // Always close the output writer
66. }
67. }

}

68. To execute the servlet: Right-click on the project ⇒ run ⇒ Change the URL

to http://localhost:8080/HelloServletJSP/sayhello.

Generating a WAR-file for a Web Application

A WAR (Web Archive) file is basically a zip file for distributing web application in single file. You can use WinZip or

WinRAR to inspect or unzip the war file.

To distribute the project as a war-file, right-click project ⇒ "Clean and Build". The war file is created in the "dist"

directory. You can deploy the web application by dropping the war-file into Tomcat's "webapps" directory.

Tomcat will automatically unzip the war-file and deploy the application upon startup.

Debugging Web Application

The most important reason for using IDE is to use the graphic debugger for debugging the program. You can set

a breakpoint in your server-side Java codes, and "Debug" a web application, similar to a standalone application.

8.4 Writing a Hello-world JSF 2.0 Web Application

Create a New JSF 2.0 Project

17. From "File" menu ⇒ choose "New Project...".

18. "Choose Project" ⇒ Under "Categories", choose "Java Web" ⇒ Under "Projects", choose "Web

Application" ⇒ "Next".

19. "Name and Location" ⇒ In "Project Name", enter "HelloJSF20" ⇒ In "Project Location", select a suitable

directory to save your works ⇒ Check "Set as Main Project" ⇒ Next.

20. "Server and settings" ⇒ Choose your server, or "add" a new server ⇒ Next.

21. "Frameworks" ⇒ Check "JavaServer Faces" ⇒ In "Libraries", "Registered Libraries", select "JSF 2.0" ⇒ Finish.

22. An "index.xhtml" JSF page is generated, as follows:

23. <?xml version='1.0' encoding='UTF-8' ?>

24. <!DOCTYPE html>

25. <html xmlns="http://www.w3.org/1999/xhtml"

26. xmlns:h="http://java.sun.com/jsf/html">

27. <h:head>

28. <title>Facelet Title</title>

29. </h:head>

30. <h:body>

31. Hello from Facelets

32. </h:body>

</html>

To run this facelet, right-click on the project ⇒ Run.

Create a new JSF 2.0 Facelet

16. Right-click on the project ⇒ New ⇒ "Other..."

17. "Choose File Type" ⇒ Under "Category", select "JavaServer Faces" ⇒ Under "File Type", select "JSF Page"

⇒ Next.

18. "Name and Location" ⇒ In "File Name", enter "HelloJSF20" ⇒ In "Options", check "Facelets" ⇒ Finish.

19. In "HelloJSF20.xhtml", enter the following codes:

20. <?xml version='1.0' encoding='UTF-8' ?>

21. <!DOCTYPE html>

178

22. <html xmlns="http://www.w3.org/1999/xhtml"

23. xmlns:h="http://java.sun.com/jsf/html">

24. <h:head>

25. <title>Hello JSF 2.0</title>

26. </h:head>

27. <h:body>

28. <h1>Hello from Facelets</h1>

29. </h:body>

</html>

30. To execute the JSF page, right-click on the project ⇒ Run ⇒ Change the URL

to http://localhost:8080/HelloJSF20/HelloJSF20.xhtml .

8.5 Writing a Hello-world JSF 1.2 Web Application

Create a New JSF 1.2 Project

24. From "File" menu ⇒ choose "New Project...".

25. "Choose Project" ⇒ In "Categories", choose "Java Web" ⇒ In "Projects", choose "Web Application" ⇒

"Next".

26. "Name and Location" ⇒ In "Project Name", enter "HelloJSF12" ⇒ In "Project Location", select a suitable

directory to save your works ⇒ Check "Set as Main Project" ⇒ Next.

27. "Server and settings" ⇒ choose your server, or "add" a new server ⇒ Next.

28. "Frameworks" ⇒ Check "JavaServer Faces" ⇒ In "Libraries", "Registered Libraries", select "JSF 1.2" ⇒ Finish.

29. A "WelcomeJSF.jsp" page is generated, as follows:

30. <%@page contentType="text/html" pageEncoding="UTF-8"%>

31. <%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>

32. <%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>

33. <!DOCTYPE html>

34. <%--
35. This file is an entry point for JavaServer Faces application.
36. --%>
37. <f:view>
38. <html>
39. <head>
40. <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
41. <title>JSP Page</title>
42. </head>
43. <body>
44. <h1><h:outputText value="JavaServer Faces"/></h1>
45. </body>
46. </html>

</f:view>

To run this page, right-click on the project ⇒ Run.

Create a new JSF 1.2 Page

21. Right-click on the project ⇒ New ⇒ "Other..."

22. "Choose File Type" ⇒ In "Category", select "JavaServer Faces" ⇒ In "File Type", select "JSF Page" ⇒ Next.

23. "Name and Location" ⇒ In "File Name", enter "HelloJSF12" ⇒ In "Options", check "JSP File (Standard

Syntax)" ⇒ Finish.

24. In "HelloJSF12.jsp", enter the following codes:

25. <%@page contentType="text/html" pageEncoding="UTF-8"%>

26. <%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>

27. <%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>

179

28. <!DOCTYPE html>

29.

30. <f:view>

31. <html>

32. <head>

33. <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

34. <title>Hello JSF 1.2</title>

35. </head>

36. <body>

37. <h1><h:outputText value="Hello World!"/></h1>

38. </body>

39. </html>

</f:view>

40. To execute the JSF page, right-click on the project ⇒ Run ⇒ Change the URL

to http://localhost:8080/HelloJSF12/faces/HelloJSF12.jsp .

8.6 Debugging Web Applications in NetBeans

You can debug a webapp just like standalone application. For example, you can set breakpoints, single-step

through the programs, etc.

Unit : 3 servlet

Servlet technology is used to create a web application (resides at server side and
generates a dynamic web page).

Servlet technology is robust and scalable because of java language. Before Servlet, CGI

(Common Gateway Interface) scripting language was common as a server-side

programming language. However, there were many disadvantages to this technology.

We have discussed these disadvantages below.

There are many interfaces and classes in the Servlet API such as Servlet, GenericServlet,
HttpServlet, ServletRequest, ServletResponse, etc.

What is a Servlet?

Servlet can be described in many ways, depending on the context.

o Servlet is a technology which is used to create a web application.

o Servlet is an API that provides many interfaces and classes including

documentation.

o Servlet is an interface that must be implemented for creating any Servlet.

o Servlet is a class that extends the capabilities of the servers and responds to the

incoming requests. It can respond to any requests.

o Servlet is a web component that is deployed on the server to create a dynamic

web page.

180

A servlet life cycle can be defined as the entire process from its creation till the
destruction. The following are the paths followed by a servlet.

 The servlet is initialized by calling the init() method.

 The servlet calls service() method to process a client's request.

 The servlet is terminated by calling the destroy() method.

 Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in detail.

The init() Method

The init method is called only once. It is called only when the servlet is created, and
not called for any user requests afterwards. So, it is used for one-time initializations,
just as with the init method of applets.

The servlet is normally created when a user first invokes a URL corresponding to
the servlet, but you can also specify that the servlet be loaded when the server is
first started.

When a user invokes a servlet, a single instance of each servlet gets created, with
each user request resulting in a new thread that is handed off to doGet or doPost as
appropriate. The init() method simply creates or loads some data that will be used
throughout the life of the servlet.

The init method definition looks like this −

public void init() throws ServletException {

 // Initialization code...

}

The service() Method

181

The service() method is the main method to perform the actual task. The servlet
container (i.e. web server) calls the service() method to handle requests coming
from the client(browsers) and to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new
thread and calls service. The service() method checks the HTTP request type (GET,
POST, PUT, DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc. methods
as appropriate.

Here is the signature of this method −

public void service(ServletRequest request, ServletResponse

response)

 throws ServletException, IOException {

}

The service () method is called by the container and service method invokes doGet,
doPost, doPut, doDelete, etc. methods as appropriate. So you have nothing to do
with service() method but you override either doGet() or doPost() depending on
what type of request you receive from the client.

The doGet() and doPost() are most frequently used methods with in each service
request. Here is the signature of these two methods.

The doGet() Method

A GET request results from a normal request for a URL or from an HTML form that
has no METHOD specified and it should be handled by doGet() method.

public void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 // Servlet code

}

The doPost() Method

A POST request results from an HTML form that specifically lists POST as the
METHOD and it should be handled by doPost() method.

public void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

The destroy() Method

The destroy() method is called only once at the end of the life cycle of a servlet.
This method gives your servlet a chance to close database connections, halt
background threads, write cookie lists or hit counts to disk, and perform other such
cleanup activities.

182

After the destroy() method is called, the servlet object is marked for garbage
collection. The destroy method definition looks like this −

public void destroy() {

 // Finalization code...

}

Architecture Diagram

The following figure depicts a typical servlet life-cycle scenario.

 First the HTTP requests coming to the server are delegated to the servlet container.

 The servlet container loads the servlet before invoking the service() method.

 Then the servlet container handles multiple requests by spawning multiple threads, each
thread executing the service() method of a single instance of the servlet.

 Six Steps to Running Your First Servlet

Once Tomcat is installed and configured, you can put it to work. Six steps take you from writing your servlet

to running it. These steps are as follows:

1. Create a directory structure under Tomcat for your application.

2. Write the servlet source code. You need to import the javax.servlet package and the javax.servlet.http

package in your source file.

3. Compile your source code.

183

4. Create a deployment descriptor.

5. Run Tomcat.

6. Call your servlet from a web browser.

Step 1: Create a Directory Structure under Tomcat

When you install Tomcat, several subdirectories are automatically created under the Tomcat home

directory (%TOMCAT_HOME%). One of the subdirectories is webapps. The webapps directory is where

you store your web applications. A web application is a collection of servlets and other contents installed

under a specific subset of the server's URL namespace. A separate directory is dedicated for each servlet

application. Therefore, the first thing to do when you build a servlet application is create an application

directory. This section explains how to create a directory structure for an application called myApp.

1. Create a directory called myApp under the webapps directory. The directory name is important

because this also appears in the URL to your servlet.

2. Create the src and WEB-INF directories under myApp, and create a directory named classes under

WEB-INF. The directory structure is shown in Figure 1.4. The src directory is for your source files,

and the classes directory under WEB-INF is for your Java classes. If you have html files, you put

them directly in the myApp directory. You also may want to create a directory called images under

myApp for all your image files.

Note that the admin, ROOT, and examples directories are for applications created automatically when you

install Tomcat.

Figure 1.4 Tomcat application directory structure.

Step 2: Write the Servlet Source Code

In this step, you prepare your source code. You can write the source code yourself using your

favorite text editor or copy it from the CD included with the book.

The code in Listing 1.1 shows a simple servlet called TestingServlet. The file, named TestingServlet.java,

sends to the browser a few HTML tags and some text. For now, don't worry if you haven't got a clue about

how it works.

Listing 1—TestingServlet.java

import javax.servlet.*;

import javax.servlet.http.*;

javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig04.gif')
javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig04.gif')
javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig04.gif')

184

import java.io.*;

import java.util.*;

public class TestingServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 PrintWriter out = response.getWriter();

 out.println("<HTML>");

 out.println("<HEAD>");

 out.println("<TITLE>Servlet Testing</TITLE>");

 out.println("</HEAD>");

 out.println("<BODY>");

 out.println("Welcome to the Servlet Testing Center");

 out.println("</BODY>");

 out.println("</HTML>");

 }

}

185

Now, save your TestingServlet.java file to the src subdirectory under myApp. You actually can place the

source files anywhere; however, it is always a good idea to be organized by storing all your source code

files in the src directory.

Step 3: Compile Your Source Code

For your servlet source code to compile, you need to include in your CLASSPATH environment variable the

path to the servlet.jar file. The servlet.jar is located in the common\lib\ subdirectory under

%CATALINA_HOME%.

NOTE

If you have forgotten how to edit the CLASSPATH environment variable, refer to Appendix A, "Tomcat

Installation and Configuration."

If you are using Windows, remember that the new environment variable takes effect only for new console

windows. In other words, after changing a new environment variable, open a new console window for

typing your command lines.

Now, change directory to your working directory and type the following if you are using Windows:

javac -d ..\WEB-INF\classes\ TestingServlet.java

If you are using Linux/UNIX, the command is very similar, except that / is used to separate a directory from

a subdirectory.

javac -d ../WEB-INF/classes/ TestingServlet.java

The -d option specifies where to place the generated class files. The command also assumes that you

have placed the JDK's bin directory in the path so you can call any program in it from any directory.

Step 4: Create the Deployment Descriptor

A deployment descriptor is an optional component in a servlet application, taking the form of an XML

document called web.xml. The descriptor must be located in the WEB-INF directory of the servlet

application. When present, the deployment descriptor contains configuration settings specific to that

application. Deployment descriptors are discussed in detail in Chapter 16. "Application Deployment."

186

For this step, you now need to create a web.xml file and place it under the WEB-INF directory under

myApp.

The web.xml for this example application must have the following content.<?xml version="1.0"

encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>

 <servlet-name>Testing</servlet-name>

 <servlet-class>TestingServlet</servlet-class>

 </servlet>

</web-app>

The web.xml file has one element: web-app. You should write all your servlets under <web-app>. For each

servlet, you have a <servlet> element and you need the <servlet-name> and <servlet-class> elements. The

<servlet-name> is the name for your servlet, by which it is known to Tomcat. The <servlet-class> is the

compiled file of your servlet without the .class extension.

Having more than one servlet in an application is common. For every servlet, you need a <servlet> element

in the web.xml file. For example, the following code shows how the web.xml looks if you add another

servlet called Login.

<?xml version="1.0" encoding="ISO-8859-1"?>

187

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>

 <servlet-name>Testing</servlet-name>

 <servlet-class>TestingServlet</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>Login</servlet-name>

 <servlet-class>LoginServlet</servlet-class>

 </servlet>

</web-app>

Step 5: Run Tomcat

If it is not already running, you need to start Tomcat. For information on how to do that, see Appendix A,

"Tomcat Installation and Configuration."

Step 6: Call Your Servlet from a Web Browser

You are ready to call your servlet from a web browser. By default, Tomcat runs on port 8080 in myApp

virtual directory under the servlet subdirectory. The servlet that you just wrote is named Testing. The URL

for that servlet has the following format:

188

http://domain-name/virtual-directory/servlet/servlet-name

If you run the web browser from the same computer as Tomcat, you can replace domain-

name with localhost. Therefore, the URL for your servlet would

be http://localhost:8080/myApp/servlet/Testing.

In the deployment descriptor you wrote in Step 4, you actually mapped the servlet class file called

TestingServlet with the name "Testing" so that your servlet can be called by specifying its class file

(TestingServlet) or its name (Testing). Without a deployment descriptor, your servlet must be called by

specifying its class name; that is, TestingServlet. This means that if you had not written a deployment

descriptor in Step 4, you would have to use the following URL to call your servlet:

http://localhost:8080/myApp/servlet/TestingServlet

Typing the URL in the Address or Location box of your web browser will give you the string "Welcome to

the Servlet Testing Center," as shown in Figure 1.5.

Figure 1.5 The Testing servlet.

Congratulations. You have just written your first servlet.

 yet another insignificant programming notes... | HOME

TABLE OF CONTENTS (HIDE)

1. Introduction

2. Review of HTTP

3. First "Hello-world" Servlet

3.1 Create a new Webapp "helloservlet"

3.2 Write a Hello-world Java Servlet - "HelloServlet.java"

3.3 Configure the Application Deployment Descriptor - "web.xml"

3.4 Run the Hello-world Servlet

4. Processing HTML Form Data

4.1 Write an HTML Form

4.2 Write a Servlet to Process Form Data - "EchoServlet.java"

4.3 Configure the Servlet URL mapping in "web.xml"

4.4 Run the EchoServlet

4.5 Form-Data Submission Methods: GET|POST

5. Request Header and Response Header

5.1 HttpServletRequest

5.2 HttpServletResponse

javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig05.gif')
javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig05.gif')
https://www3.ntu.edu.sg/home/ehchua/programming/index.html
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#show-toc
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-1.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-2.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-3.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-3.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-3.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-3.3
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-3.4
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.3
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.4
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.5
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-5.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-5.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-5.2
javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig05.gif')

189

6. Session Tracking

6.1 HttpSession

6.2 Example

7. ServletConfig and ServletContext

8. Developing and Deploying Web Applications using IDE

9. Tomcat's Servlet Examples

10. Database Servlet

11. Servlet API – A Deeper Look

11.1 Interface Servlet

11.2 A Servlet's Life cycle

11.3 Interface ServletContext

11.4 Dispatch Request - RequestDispatcher

11.5 Filtering

12. Web Application Deployment Descriptor "web.xml"

12.1 A Sample "web.xml"

12.2 Syntax for "web.xml"

12.3 Servlet Deployment Descriptor

12.4 Servlet Initialization Parameters

12.5 Application Initialization Parameters

12.6 Server-wide Initialization Parameters

12.7 Welcome Page

13. Servlet 3.0

13.1 @WebServlet

13.2 @WebInitParam

13.3 @WebFilter

13.4 @WebListener

13.5 @MultipartConfig

Java Server-Side

Programming

Java Servlets
1. Introduction
In the early days, web servers deliver static contents that are indifferent to users' requests. Java

servlets are server-side programs (running inside a web server) that handle clients' requests and

return a customized or dynamic response for each request. The dynamic response could be based

on user's input (e.g., search, online shopping, online transaction) with data retrieved from

databases or other applications, or time-sensitive data (such as news and stock prices).

https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-6.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-6.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-6.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-7.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-8.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-9.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-10.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.3
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.4
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.5
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.3
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.4
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.5
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.6
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.7
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.3
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.4
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.5

190

Java servlets typically run on the HTTP protocol. HTTP is an asymmetrical request-response

protocol. The client sends a request message to the server, and the server returns a response

message as illustrated.

Server-Side Technologies

There are many (competing) server-side technologies available: Java-based (servlet, JSP, JSF,

Struts, Spring, Hibernate), ASP, PHP, CGI Script, and many others.

Java servlet is the foundation of the Java server-side technology, JSP (JavaServer Pages), JSF

(JavaServer Faces), Struts, Spring, Hibernate, and others, are extensions of the servlet technology.

Pre-requisites

HTML, Java Programming Language, HTTP and Apache Tomcat Server, SQL and MySQL Database

System, and many others.

Apache Tomcat Server

Servlets are server-side programs run inside a Java-capable HTTP server. Apache Tomcat Server

(@ http://tomcat.apache.org) is the official Reference Implementation (RI) for Java servlet and

JSP, provided free by open-source foundation Apache (@ http://www.apache.org).

http://tomcat.apache.org/
http://www.apache.org/

191

You need to install Tomcat to try out Java servlets. Read "How to Install Tomcat and Get Started

Java Servlet Programming".

I shall denote Tomcat's installed directory as <CATALINA_HOME>, and assume that Tomcat server is

running in port 8080.

Tomcat provides many excellent servlet examples in

"<CATALINA_HOME>\webapps\examples\servlets". You can run these examples by launching

Tomcat and issuing URL http://localhost:8080/examples.

Java Servlet Versions

Java Servlet has these versions: [TODO features and what is new]

 J2EE 1.2 (December 12, 1999) (Java Servlet 2.2, JSP 1.1, EJB 1.1, JDBC 2.0)

 J2EE 1.3 (September 24, 2001) (Java Servlet 2.3, JSP 1.2, EJB 2.0, JDBC 2.1)

 J2EE 1.4 (November 11, 2003) (Java Servlet 2.4, JSP 2.0, EJB 2.1, JDBC 3.0)

 Java EE 5 (May 11, 2006) (Java Servlet 2.5, JSP 2.1, JSTL 1.2, JSF 1.2, EJB 3.0, JDBC 3.0)

 Java EE 6 (December 10, 2009) (Java Servlet 3.0, JSP 2.2/EL 2.2, JSTL 1.2, JSF 2.0, EJB 3.1,

JDBC 4.0)

 Java EE 7: expected in end of 2012.

The Java Servlets Home Page is

@ http://java.sun.com/products/servlet (http://www.oracle.com/technetwork/java/javaee/servlet/i

ndex.html). For developers, check out the Servlet Developers @ http://java.net/projects/servlet/.

Java Servlet is the foundation technology for Java server-side programming. You need to

understand Servlet thoroughly before you could proceed to other Java server-side technologies

such as JavaServer Pages (JSP) and JavaServer Faces (JSF).

2. Review of HTTP
A HTTP Servlet runs under the HTTP protocol. It is important to understanding the HTTP protocol

in order to understand server-side programs (servlet, JSP, ASP, PHP, etc) running over the HTTP.

Read "HTTP Basics", if needed.

In brief, HTTP is a request-response protocol. The client sends a request message to the server.

The server, in turn, returns a response message. The messages consists of two parts: header

(information about the message) and body (contents). Header provides information about the

messages. The data in header is organized in name-value pairs.

Read "HTTP Request and Response Messages" for the format, syntax of request and response

messages, and examples.

3. First "Hello-world" Servlet

Let us begin by writing a servlet that says hello in response to a client's request. We shall use JDK

and Tomcat to understand the basics, instead of IDE such as Eclipse/NetBeans. Once you

understand the basics, you should use Eclipse/NetBeans to develop your webapp for better

productivity.

3.1 Create a new Webapp "helloservlet"

We shall begin by defining a new webapp (web application) called "helloservlet" in Tomcat. A

webapp, known as a web context in Tomcat, comprises a set of resources, such as HTML files, CSS,

JavaScripts, images, programs and libraries.

https://www3.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_HowTo.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_HowTo.html
http://java.sun.com/products/servlet/
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://java.net/projects/servlet/
https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html
https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html#http_mesages

192

A Java webapp has a standardized directory structure for storing various types of resources.

Create a directory "helloservlet" under Tomcat's "webapps" directory (i.e.,

"<CATALINA_HOME>\webapps\helloservlet", where <CATALINA_HOME> denotes Tomcat's installed

directory). Create sub-directories "WEB-INF" and "META-INF" under "helloservlet". Create sub-

sub-directories "classes", "lib" and "src" under "WEB-INF". Take note that the directory names

are case-sensitive.

The resources must be kept in the respective directories:

 <CATALINA_HOME>\webapps\helloservlet : This directory is known as context

root for the web context "helloservlet". It contains the resources that are accessible by the

clients, such as HTML, CSS, Scripts and images. These resources will be delivered to the

clients as it is. You could create sub-directories such as images, css and scripts, to further

categories the resources.

 <CATALINA_HOME>\webapps\helloservlet\WEB-INF : This directory is NOT

accessible by the clients directly. This is where you keep your application-specific

configuration files (such as "web.xml"), and its sub-directories contain program classes,

source files, and libraries.

o <CATALINA_HOME>\webapps\helloservlet\WEB-INF\src : Keep the Java

program source files. It is a good practice to separate the source files and classes to

facilitate deployment.

o <CATALINA_HOME>\webapps\helloservlet\WEB-INF\classes : Keep

the Java classes (compiled from the source codes). Classes defined in packages must be

kept according to the package directory structure.

193

o <CATALINA_HOME>\webapps\helloservlet\WEB-INF\lib : keep the JAR

files provided by external packages, available to this webapp only.

 <CATALINA_HOME>\webapps\helloservlet\META-INF : This directory is also

NOT accessible by the clients. It keeps resources and configurations (e.g., "context.xml")

related to the particular server (e.g., Tomcat, Glassfish). In contrast, "WEB-INF" is for resources

related to this webapp, independent of the server.

3.2 Write a Hello-world Java Servlet - "HelloServlet.java"

Servlets are Java programs that runs inside a Java-capable HTTP server. A user can invoke a

servlet by issuing a specific URL from the browser (HTTP client). In this example, we shall write a

servlet called "HelloServlet.java" and compiled into "HelloServlet.class". A client can

invoke "HelloServlet.class" by issuing

URL http://hostname:port/helloServlet/sayhello (i.e., "sayhello" relative to the webapp).

A servlet shall be kept inside a Java package (instead of the default no-name package) for proper

deployment. Let's call our package "mypkg". Create a sub-directory called "mypkg" under "WEB-

INF\src". Use a programming text editor to enter the following source codes, and save as

"HelloServlet.java" in "<CATALINA_HOME>\webapps\helloservlet\WEB-INF\src\mypkg".

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

// To save as "<CATALINA_HOME>\webapps\helloservlet\WEB-INF\src\mypkg\HelloServlet.java"

package mypkg;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloServlet extends HttpServlet {

 @Override

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 // Set the response message's MIME type

 response.setContentType("text/html;charset=UTF-8");

 // Allocate a output writer to write the response message into the network socket

 PrintWriter out = response.getWriter();

 // Write the response message, in an HTML page

 try {

 out.println("<!DOCTYPE html>");

 out.println("<html><head>");

 out.println("<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'>");

 out.println("<title>Hello, World</title></head>");

 out.println("<body>");

 out.println("<h1>Hello, world!</h1>"); // says Hello

 // Echo client's request information

 out.println("<p>Request URI: " + request.getRequestURI() + "</p>");

 out.println("<p>Protocol: " + request.getProtocol() + "</p>");

 out.println("<p>PathInfo: " + request.getPathInfo() + "</p>");

 out.println("<p>Remote Address: " + request.getRemoteAddr() + "</p>");

 // Generate a random number upon each request

 out.println("<p>A Random Number: " + Math.random() + "</p>");

 out.println("</body>");

194

33

34

35

36

37

38

 out.println("</html>");

 } finally {

 out.close(); // Always close the output writer

 }

 }

}

Dissecting the Program:

 We define a Java class called HelloServlet (in Line 8). Line 2 places this class in a package

called mypkg. Hence, we save the source file under "mypkg" of the "helloservlet\WEB-

INF\src" directory, following the Java's standard package directory structure.

 We need the Servlet API library to compile this program. Servlet API is not part of JDK or

Java SE (but belongs to Java EE). Tomcat provides a copy of servlet API called "servlet-

api.jar" in "<CATALINA_HOME>\lib". You could copy "servlet-api.jar" from

"<CATALINA_HOME>\lib" to "<JAVA_HOME>\jre\lib\ext" (the JDK Extension Directory), or

include the Servlet JAR file in your CLASSPATH.

 To compile the program under JDK, we need to use the -d option to specify the

output destination directory to place the compiled class in "helloservlet\WEB-

INF\class\mypkg" directory.

 // Change directory to <CATALINA_HOME>\webapps\helloservlet\WEB-INF

 d:\...> cd <CATALINA_HOME>\webapps\helloservlet\WEB-INF

 // Compile the source file and place the class in the specified destination

directory

d:\<CATALINA_HOME>\webapps\helloservlet\WEB-INF> javac -d classes

src\mypkg\HelloServlet.java

The option "-d classes" specifies the output destination directory, relative to the current

directory. The output is <CATALINA_HOME>\webapps\helloservlet\WEB-

INF\classes\mypkg\HelloServlet.class. The compiler creates the package directory

"mypkg" automatically.

 We don't write a servlet from scratch. Instead, we create a servlet by sub-

classing javax.servlet.http.HttpServlet (in Line 8).

 As mentioned, a servlet is invoked in response to a request URL issued by a client.

Specifically, a client issues an HTTP request, the server routes the request message to the

servlet for processing. The servlet returns a response message to the client.

 An HTTP request could use either GET or POST request methods, which will be processed by

the servlet's doGet() or doPost() method, respectively.

 In the HelloServlet, we override the doGet() method (as denoted by the

annotation @Override). The doGet() runs in response to an HTTP GET request issued by a

user via an URL. doGet() takes two arguments, an HttpServletRequest object and

an HttpServletResponse object, corresponding to the request and response messages.

 The HttpServletRequest object can be used to retrieve incoming HTTP request

headers and form data. The HttpServletResponse object can be used to set the

HTTP response headers (e.g., content-type) and the response message body.

 In Line 13, we set the "MIME" type of the response message to "text/html". The client need

to know the message type in order to correctly display the data received. (Other MIME types

include text/plain, image/jpeg, video/mpeg, application/xml, and many others.) In Line

195

15, we retrieve a Writer object called out for writing the response message to the client

over the network. We then use the out.println() to print out a proper HTML page

containing the message "Hello, world!". This servlet also echoes some of the clients's request

information, and prints a random number for each request.

3.3 Configure the Application Deployment Descriptor -

"web.xml"

A web user invokes a servlet, which is kept in the web server, by issuing a specific URL from the

browser. In this example, we shall configure the following request URL to trigger the

"HelloServlet":

http://hostname:port/helloservlet/sayhello

Create a configuration file called "web.xml", and save it under "webapps\helloservlet\WEB-

INF", as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="3.0"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

 <!-- To save as <CATALINA_HOME>\webapps\helloservlet\WEB-INF\web.xml -->

 <servlet>

 <servlet-name>HelloWorldServlet</servlet-name>

 <servlet-class>mypkg.HelloServlet</servlet-class>

 </servlet>

 <!-- Note: All <servlet> elements MUST be grouped together and

 placed IN FRONT of the <servlet-mapping> elements -->

 <servlet-mapping>

 <servlet-name>HelloWorldServlet</servlet-name>

 <url-pattern>/sayhello</url-pattern>

 </servlet-mapping>

</web-app>

 The "web.xml" is called web application deployment descriptor. It provides the configuration

options for that particular web application, such as defining the the mapping between URL

and servlet class.

 The above configuration defines a servlet named "HelloWroldServlet", implemented in

"mypkg.HelloServlet.class" (written earlier), and maps to URL "/sayhello", where "/"

denotes the context root of this webapp "helloservlet". In other words, the absolute URL

196

for this servlet is http://hostname:port/helloservlet/sayhello.

 Take note that EACH servlet requires a pair of <servlet> and <servlet-mapping> elements

to do the mapping, via an arbitrary but unique <servlet-name>. Furthermore, all

the <servlet> elements must be grouped together and placed before the <servlet-

mapping> elements (as specified in the XML schema).

3.4 Run the Hello-world Servlet

To run the servlet, first start the Tomcat server. Verify that the web context "helloservlet" has

been deployed by observing the following messages in the Tomcat's console:

xxx x, xxxx xx:xx:xx xx org.apache.catalina.startup.HostConfig deployDirectory

INFO: Deploying web application directory helloservlet

......

Start a web browser (Firefox, IE or Chrome), and issue the following URL (as configured in the

"web.xml"). Assume that Tomcat is running in port number 8080.

http://localhost:8080/helloservlet/sayhello

We shall see the output "Hello, world!".

197

Try selecting "View Source" in your browser, which produces these output:

<!DOCTYPE html>

<html><head>

<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'>

<title>Hello, World</title></head>

<body>

<h1>Hello, world!</h1>

<p>Request URI: /helloservlet/sayhello</p>

<p>Protocol: HTTP/1.1</p>

<p>PathInfo: null</p>

<p>Remote Address: 127.0.0.1</p>

<p>A Random Number: 0.4320795689818858</p>

</body>

</html>

It is important to take note that users receive the output of the servlet. User does not receive the

servlet's program codes, which are kept under a hidden directory "WEB-INF" and not directly

accessible by web users.

Everything that can possibly go wrong will go wrong... Read "Common Error

Messages". The likely errors are "404 File Not Found" and "500 Internal Server Error".

4. Processing HTML Form Data

4.1 Write an HTML Form

HTML provides a <form>...</form> tag, which can be used to build a user input form containing

elements such as text fields, password field, radio buttons, pull-down menu, checkboxes, text

area, hidden field, submit and reset buttons. This allows web users to interact with the web server

by submit data. For example,

https://www3.ntu.edu.sg/home/ehchua/programming/howto/ErrorMessages.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/ErrorMessages.html

198

Create the following HTML script, and save as "form_input.html" under the context root

"helloservlet".

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

<!DOCTYPE html>

<html>

<head>

 <meta http-equiv='Content-Type' content='text/html; charset=UTF-8'>

 <title>User Input Form</title>

</head>

<body>

<h2>User Input Form</h2>

<form method="get" action="echo">

 <fieldset>

 <legend>Personal Particular</legend>

 Name: <input type="text" name="username" />

 Password: <input type="password" name="password" />

 Gender: <input type="radio" name="gender" value="m" checked />Male

 <input type="radio" name="gender" value="f" />Female

 Age: <select name = "age">

 <option value="1">< 1 year old</option>

 <option value="99">1 to 99 years old</option>

199

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 <option value="100">> 99 years old</option>

 </select>

 </fieldset>

 <fieldset>

 <legend>Languages</legend>

 <input type="checkbox" name="language" value="java" checked />Java

 <input type="checkbox" name="language" value="c" />C/C++

 <input type="checkbox" name="language" value="cs" />C#

 </fieldset>

 <fieldset>

 <legend>Instruction</legend>

 <textarea rows="5" cols="30" name="instruction">Enter your instruction here...</textarea>

 </fieldset>

 <input type="hidden" name="secret" value="888" />

 <input type="submit" value="SEND" />

 <input type="reset" value="CLEAR" />

</form>

</body>

</html>

Start the tomcat server. Issue the following URL to request for the HTML page:

http://localhost:8080/helloservlet/form_input.html

Explanation

 The <fieldset>...</fieldset> tag groups related elements and displays them in a box.

The <legend>...</legend> tag provides the legend for the box.

 This HTML form (enclosed within <form>...</form>) contains the following types of input

elements:

1. Text field (<input type="text">): for web users to enter text.

2. Radio buttons (<input type="radio">): choose any one (and possibly none).

3. Pull-down menu (<select> and <option>): pull-down menu of options.

4. Checkboxes (<input type="checkbox">): chose none or more.

5. Text area (<textarea>...<textarea>): for web users to enter multi-line text. (Text

field for single line only.)

6. Hidden field (<input type="hidden">): for submitting hidden name=value pair.

7. Submit button (<input type=submit>): user clicks this button to submit the form data

to the server.

8. Reset button (<input type="reset">): resets all the input field to their default value.

Each of the input elements has an attribute "name", and an optional attribute "value". If an

element is selected, its "name=value" pair will be submitted to the server for processing.

 The <form> start-tag also specifies the URL for submission in the action="url" attribute,

and the request method in the method="get|post" attribute.

200

For example, suppose that we enter "Alan Smith" in the text field, select "male", and click the

"SEND" button, we will get a "404 page not found" error (because we have yet to write the

processing script). BUT observe the destination URL:

http://localhost:8080/helloservlet/echo?username=Alan+Smith&gender=m&....

Observe that:

 The URL http://localhost:8080/helloservlet/echo is retrieved from the

attribute action="echo" of the <form> start-tag. Relative URL is used in this example.

The base URL for the current page "form_input.html"

is http://localhost:8080/helloservlet/. Hence, the relative URL "echo" resolves

into http://localhost:8080/helloservlet/echo.

 A '?' follows the URL, which separates the URL and the so-called query string (or query

parameters, request parameters) followed.

 The query string comprises the "name=value" pairs of the selected input elements (i.e.,

"username=Alan+Smith" and "gender=m"). The "name=value" pairs are separated by an '&'.

Also take note that the blank (in "Alan Smith") is replace by a '+'. This is because special

characters are not permitted in the URL and have to be encoded (known as URL-encoding).

Blank is encoded as '+' (or %20). Other characters are encoded as %xx, where xx is the ASCII

code in hex. For example, '&' as %26, '?' as %3F.

 Some input elements such as checkboxes may trigger multiple parameter values, e.g.,

"language=java&language=c&language=cs" if all three boxes are checked.

 HTTP provides two request methods: GET and POST. For GET request, the query parameters

are appended behind the URL. For POST request, the query string are sent in the request

message's body. POST request is often preferred, as users will not see the strange string in

the URL and it can send an unlimited amount of data. The amount of data that can be sent

via the GET request is limited by the length of the URL. The request method is specified in

the <form method="get|post"...> start-tag. In this tutorial, we use the GET request, so that

you can inspect the query string.

4.2 Write a Servlet to Process Form Data - "EchoServlet.java"

The form that we have written send its data to a server-side program having relative URL of

"echo" (as specified in the action="url" attribute of the <form> start-tag). Let us write a servlet

called EchoServlet, which shall be mapped to the URL "echo", to process the incoming form

data. The servlet simply echoes the data back to the client.

Similar to the "HelloServlet", we define the "EchoServlet" under package "mypkg", and save

the source file as "<CATALINA_HOME>\webapps\helloservlet\WEB-

INF\src\mypkg\EchoServlet.java".

// To save as "<CATALINA_HOME>\webapps\helloservlet\WEB-INF\src\mypkg\EchoServlet.java"

package mypkg;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class EchoServlet extends HttpServlet {

 @Override

201

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 // Set the response message's MIME type

 response.setContentType("text/html; charset=UTF-8");

 // Allocate a output writer to write the response message into the network socket

 PrintWriter out = response.getWriter();

 // Write the response message, in an HTML page

 try {

 out.println("<!DOCTYPE html>");

 out.println("<html><head>");

 out.println("<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'>");

 out.println("<title>Echo Servlet</title></head>");

 out.println("<body><h2>You have enter</h2>");

 // Retrieve the value of the query parameter "username" (from text field)

 String username = request.getParameter("username");

 // Get null if the parameter is missing from query string.

 // Get empty string or string of white spaces if user did not fill in

 if (username == null

 || (username = htmlFilter(username.trim())).length() == 0) {

 out.println("<p>Name: MISSING</p>");

 } else {

 out.println("<p>Name: " + username + "</p>");

 }

 // Retrieve the value of the query parameter "password" (from password field)

 String password = request.getParameter("password");

 if (password == null

 || (password = htmlFilter(password.trim())).length() == 0) {

 out.println("<p>Password: MISSING</p>");

 } else {

 out.println("<p>Password: " + password + "</p>");

 }

 // Retrieve the value of the query parameter "gender" (from radio button)

 String gender = request.getParameter("gender");

 // Get null if the parameter is missing from query string.

 if (gender == null) {

 out.println("<p>Gender: MISSING</p>");

 } else if (gender.equals("m")) {

 out.println("<p>Gender: male</p>");

 } else {

 out.println("<p>Gender: female</p>");

 }

 // Retrieve the value of the query parameter "age" (from pull-down menu)

 String age = request.getParameter("age");

 if (age == null) {

202

 out.println("<p>Age: MISSING</p>");

 } else if (age.equals("1")) {

 out.println("<p>Age: < 1 year old</p>");

 } else if (age.equals("99")) {

 out.println("<p>Age: 1 to 99 years old</p>");

 } else {

 out.println("<p>Age: > 99 years old</p>");

 }

 // Retrieve the value of the query parameter "language" (from checkboxes).

 // Multiple entries possible.

 // Use getParameterValues() which returns an array of String.

 String[] languages = request.getParameterValues("language");

 // Get null if the parameter is missing from query string.

 if (languages == null || languages.length == 0) {

 out.println("<p>Languages: NONE</p>");

 } else {

 out.println("<p>Languages: ");

 for (String language : languages) {

 if (language.equals("c")) {

 out.println("C/C++ ");

 } else if (language.equals("cs")) {

 out.println("C# ");

 } else if (language.equals("java")) {

 out.println("Java ");

 }

 }

 out.println("</p>");

 }

 // Retrieve the value of the query parameter "instruction" (from text area)

 String instruction = request.getParameter("instruction");

 // Get null if the parameter is missing from query string.

 if (instruction == null

 || (instruction = htmlFilter(instruction.trim())).length() == 0

 || instruction.equals("Enter your instruction here...")) {

 out.println("<p>Instruction: NONE</p>");

 } else {

 out.println("<p>Instruction: " + instruction + "</p>");

 }

 // Retrieve the value of the query parameter "secret" (from hidden field)

 String secret = request.getParameter("secret");

 out.println("<p>Secret: " + secret + "</p>");

 // Get all the names of request parameters

 Enumeration names = request.getParameterNames();

 out.println("<p>Request Parameter Names are: ");

 if (names.hasMoreElements()) {

203

 out.print(htmlFilter(names.nextElement().toString()));

 }

 do {

 out.print(", " + htmlFilter(names.nextElement().toString()));

 } while (names.hasMoreElements());

 out.println(".</p>");

 // Hyperlink "BACK" to input page

 out.println("BACK");

 out.println("</body></html>");

 } finally {

 out.close(); // Always close the output writer

 }

 }

 // Redirect POST request to GET request.

 @Override

 public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 doGet(request, response);

 }

 // Filter the string for special HTML characters to prevent

 // command injection attack

 private static String htmlFilter(String message) {

 if (message == null) return null;

 int len = message.length();

 StringBuffer result = new StringBuffer(len + 20);

 char aChar;

 for (int i = 0; i < len; ++i) {

 aChar = message.charAt(i);

 switch (aChar) {

 case '<': result.append("<"); break;

 case '>': result.append(">"); break;

 case '&': result.append("&"); break;

 case '"': result.append("""); break;

 default: result.append(aChar);

 }

 }

 return (result.toString());

 }

}

Dissecting the Program

 The query string comprises name=value pairs. We can retrieve the query parameters from

the request message (captured in doGet()'s argument HttpServletRequest request) via

one of the following methods:

204

 request.getParameter("paramName")

 // Returns the parameter value in a String.

 // Returns null if parameter name does not exist.

 // Returns the first parameter value for a multi-value parameter.

 request.getParameterValues("paramName")

 // Return all the parameter values in a String[].

 // Return null if the parameter name does not exist.

 request.getParameterNames()

 // Return all the parameter names in a java.util.Enumeration, possibly

empty.

 Take note that the parameter name is case sensitive.

 We use request.getParameter("paramName") to retrieve the parameter value for most of

the single-value input elements (such as text field, radio button, text area, etc). If the

parameter is present (not null), we trim() the returned string to remove the leading and

trailing white spaces.

 We also replace the special HTML characters (>, <, &, ") with the HTML escape sequences in

the input strings, before we echo them back to the client via out.println(). This step is

necessary to prevent the so-called command-injection attack, where user enters a script into

the text field. The replacement is done via a static helper method htmlFilter(). [

Rule of thumb: Any text string taken from the client and echoing back

via out.println() needs to be filtered!

 If the parameter could possess multiple values (e.g., checkboxes), we

use request.getParameterValues(), which returns an array of String or null if the

parameter does not exist.

 One of the nice features of Java servlet is that all the form data decoding (i.e., URL-decoding)

is handled automatically. That is, '+' will be decoded to blank, %xx decoded into the

corresponding character.

4.3 Configure the Servlet URL mapping in "web.xml"

Our <form>'s action attribute refers to relative URL "echo", which has to be mapped to

the EchoServlet.class in the web application deployment descriptor file "WEB-INF\web.xml":

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="3.0"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

 <!-- To save as <CATALINA_HOME>\webapps\helloservlet\WEB-INF\web.xml -->

 <servlet>

 <servlet-name>HelloWorldServlet</servlet-name>

 <servlet-class>mypkg.HelloServlet</servlet-class>

 </servlet>

205

 <servlet>

 <servlet-name>EchoServletExample</servlet-name>

 <servlet-class>mypkg.EchoServlet</servlet-class>

 </servlet>

 <!-- Note: All <servlet> elements MUST be grouped together and

 placed IN FRONT of the <servlet-mapping> elements -->

 <servlet-mapping>

 <servlet-name>HelloWorldServlet</servlet-name>

 <url-pattern>/sayhello</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>EchoServletExample</servlet-name>

 <url-pattern>/echo</url-pattern>

 </servlet-mapping>

</web-app>

4.4 Run the EchoServlet

Start the Tomcat server. Issue URL http://localhost:8080/helloservlet/form_input.html.

Fill up the form, click the submit button to trigger the servlet. Alternatively, you could issue a URL

with query string.

4.5 Form-Data Submission Methods: GET|POST

Two request methods, GET and POST, are available for submitting form data, to be specified in

the <form>'s attribute "method=GET|POST". GET and POST performs the same basic function. That

is, gather the name-value pairs of the selected input elements, URL-encode, and pack them into a

query string. However, in a GET request, the query string is appended behind the URL, separated

by a '?'. Whereas in a POST request, the query string is kept in the request body (and not shown

in the URL). The length of query string in a GET request is limited by the maximum length of URL

permitted, whereas it is unlimited in a POST request. I recommend POST request for production,

as it does not show the strange looking query string in the URL, even if the amount of data is

limited. In this tutorial, I use GET method, so that you can inspect the query string on the URL.

To try out the POST request, modify the "form_input.html":

<form method="post" action="echo">

</form>

Inside the servlet, GET request is processed by the method doGet(), while POST request is

processed by the method doPost(). Since they often perform identical operations, we re-

direct doPost() to doGet() (or vice versa), as follows:

public class MyServlet extends HttpServlet {

 // doGet() handles GET request

 @Override

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

206

 }

 // doPost() handles POST request

 @Override

 public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 doGet(request, response); // call doGet()

 }

}

5. Request Header and Response Header
HTTP is a request-response protocol. The client sends a request message to the server. The

server, in turn, returns a response message. The request and response messages consists of two

parts: header (information about the message) and body (contents). Header provides information

about the messages. The data in header is organized in name-value pairs. Read "HTTP Request

and Response Messages" for the format, syntax of request and response messages.

5.1 HttpServletRequest

The request message is encapsulated in an HttpServletRequest object, which is passed into

the doGet() methods. HttpServletRequest provides many methods for you to retrieve the

headers:

 General methods: getHeader(name), getHeaders(name), getHeaderNames().

 Specific methods: getContentLength(), getContentType(), getCookies(), getAuthType(),

etc.

 URL related: getRequestURI(), getQueryString(), getProtocol(), getMethod().

Example: Read "Request Header Example".

5.2 HttpServletResponse

The response message is encapsulated in the HttpServletResponse, which is passed

into doGet() by reference for receiving the servlet output.

 setStatusCode(int statuscode), sendError(int code, String

message), sendRedirect(url).

 response.setHeader(String headerName, String headerValue).

 setContentType(String mimeType), setContentLength(int length), etc.

Example: [TODO]

6. Session Tracking
HTTP is a stateless protocol. In other words, the current request does not know what has been

done in the previous requests. This creates a problem for applications that runs over many

requests, such as online shopping (or shopping cart). You need to maintain a so-called session to

pass data among the multiple requests.

You can maintain a session via one of these three approaches:

1. Cookie: A cookie is a small text file that is stored in the client's machine, which will be send

to the server on each request. You can put your session data inside the cookie. The biggest

problem in using cookie is clients may disable the cookie.

2. URL Rewriting: Passes data by appending a short text string at the end of every URL,

e.g., http://host/path/file.html;jsessionid=123456. You need to rewrite all the URLs

(e.g., the "action" attribute of <form>) to include the session data.

https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html#http_mesages
https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html#http_mesages
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletExamples.html#ServletExample_RequestHeader

207

3. Hidden field in an HTML form: pass data by using hidden field tag (<input type="hidden"

name="session" value="...." />). Again, you need to include the hidden field in all the

pages.

For detailed information, read "HTTP state and session management".

6.1 HttpSession

Programming your own session tracking (using the above approaches) is tedious and

cumbersome. Fortunately, Java Servlet API provides a session tracking facility, via an interface

called javax.servlet.http.HttpSession. It allows servlets to:

 View and manipulate information about a session, such as the session identifier, creation

time, and last accessed time.

 Bind objects to sessions, allowing user information to persist across multiple user requests.

The procedure is as follows:

1. Check if a session already exists. If so, use the existing session object; otherwise, create a

new session object. Servlet API automates this step via the getSession() method

of HttpServletRequest:

2. // Retrieve the current session. Create one if not exists

3. HttpSession session = request.getSession(true);

4. HttpSession session = request.getSession(); // same as above

5.

6. // Retrieve the current session.

7. // Do not create new session if not exists but return null

HttpSession session = request.getSession(false);

The first statement returns the existing session if exists, and create a

new HttpSession object otherwise. Each session is identified via a session ID. You can

use session.getID() to retrieve the session ID string.

HttpSession, by default, uses cookie to pass the session ID in all the client's requests

within a session. If cookie is disabled, HttpSession switches to URL-rewriting to append

the session ID behind the URL. To ensure robust session tracking, all the URLs emitted

from the server-side programs should pass thru the method response.encodeURL(url). If

cookie is used for session tracking, encodeURL(url) returns the url unchanged. If URL-

rewriting is used, encodeURL(url) encodes the specified url by including the session ID.

8. The session object maintains data in the form of key-value pairs. You can

use session.getAttribute(key) to retrieve the value of an existing

key, session.setAttribute(key, value) to store new key-value pair,

and session.removeAttribute(key) to remove an existing key-value pair. For example,

9. // Allocate a shopping cart (assume to be a list of String)

10. List<String> shoppingCart = new ArrayList<>();

11. // Populate the shopping cart

12. shoppingCart.add("Item 1");

13.

14. // Retrieve the current session, create one if not exists

15. HttpSession session = request.getSession(true);

16. // Place the shopping cart inside the session

17. synchronized (session) { // synchronized to prevent concurrent updates

https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_StateManagement.html

208

18. session.setAttribute("cart", shoppingCart);

19. }

.....

Any page within the session can retrieve the shopping cart:

// Retrieve the current session, do not create new session

HttpSession session = request.getSession(false);

if (session != null) {

 List<String> theCart = (List<String>)session.getAttribute("cart");

 if (theCart != null) { // cart exists?

 for (String item : theCart) {

 }

 }

}

20. You can use session.invalidate() to terminate and remove a session. You can use

set setMaxInactiveInterval() and getMaxInactiveInterval() to set and get the

inactive interval from the last client request, before the server invalidate the session.

6.2 Example

The following servlet demonstrates the use of session, by counting the number of accesses within

this session from a particular client. We also use getID() to retrieve the session

ID, getCreationTime() and getLastAccessedTime() to get the session creation and last

accessed times.

SessionServlet.java

// To save as "<CATALINA_HOME>\webapps\helloservlet\WEB-

INF\src\mypkg\SessionServlet.java"

package mypkg;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.Date;

public class SessionServlet extends HttpServlet {

 @Override

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 // Set the response message's MIME type

 response.setContentType("text/html;charset=UTF-8");

 // Allocate a output writer to write the response message into the network

socket

 PrintWriter out = response.getWriter();

 // Return the existing session if there is one. Create a new session

otherwise.

 HttpSession session = request.getSession();

 Integer accessCount;

 synchronized(session) {

209

 accessCount = (Integer)session.getAttribute("accessCount");

 if (accessCount == null) {

 accessCount = 0; // autobox int to Integer

 } else {

 accessCount = new Integer(accessCount + 1);

 }

 session.setAttribute("accessCount", accessCount);

 }

 // Write the response message, in an HTML page

 try {

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head><meta http-equiv='Content-Type' content='text/html;

charset=UTF-8'>");

 out.println("<title>Session Test Servlet</title></head><body>");

 out.println("<h2>You have access this site " + accessCount + " times in

this session.</h2>");

 out.println("<p>(Session ID is " + session.getId() + ")</p>");

 out.println("<p>(Session creation time is " +

 new Date(session.getCreationTime()) + ")</p>");

 out.println("<p>(Session last access time is " +

 new Date(session.getLastAccessedTime()) + ")</p>");

 out.println("<p>(Session max inactive interval is " +

 session.getMaxInactiveInterval() + " seconds)</p>");

 out.println("<p><a href='" + request.getRequestURI() +

"'>Refresh");

 out.println("<p><a href='" + response.encodeURL(request.getRequestURI())

+

 "'>Refresh with URL rewriting");

 out.println("</body></html>");

 } finally {

 out.close(); // Always close the output writer

 }

 }

}

web.xml

......

<servlet>

 <servlet-name>SessionTestServlet</servlet-name>

 <servlet-class>mypkg.SessionServlet</servlet-class>

</servlet>

......

......

<servlet-mapping>

 <servlet-name>SessionTestServlet</servlet-name>

 <url-pattern>/sessiontest</url-pattern>

</servlet-mapping>

210

Running the Servlet

You can use URL http://localhost:8080/helloservlet/sessiontest to access this servlet. Try

refreshing the page. Try also closing and restart the browser, and issue the URL.

Under Firefox, a cookie named jsessionid is created for this session. The value of the cookie is

the same as the return value of session.getID(). By default, Servlet API uses a cookie for

managing session, but will automatically switch into URL rewriting if cookie is disabled. To ensure

robust session tracking, all the URLs emitted from the server-side programs should pass thru the

method response.encodeURL(url). If cookie is used for session

tracking, encodeURL(url) returns the url unchanged. If URL-rewriting is

used, encodeURL(url) encodes the specified url by including the session ID. The session data

are kept in the server, only a session ID is passed to the client.

211

Try disabling the cookie, and use (a) the refresh button (F5), (b) refresh and clear cache (Ctrl-F5),

(c) the refresh link, and (d) the refresh with URL re-writing, to refresh the page.

7. ServletConfig and ServletContext
ServletConfig

ServletConfig is a servlet configuration object used by a servlet container (e.g., Tomcat,

GlassFish) to pass information to a servlet during initialization. It is passed as the argument in

the init() method. The init parameters are declared in the application-specific deployment

descriptor "web.xml". You can retrieve the init parameters

via ServletConfig.getInitParam("paramName") method. For example, suppose the

application's "web.xml" declares these initialization parameters about database connection:

<web-app ...>

 ...

 <servlet>

 ...

 <init-param>

 <param-name>databaseURL</param-name>

 <param-value>jdbc:mysql://localhost:3306/ebookshop</param-value>

 </init-param>

 <init-param>

 <param-name>user</param-name>

 <param-value>myuser</param-value>

 </init-param>

 <init-param>

 <param-name>password</param-name>

212

 <param-value>xxxx</param-value>

 </init-param>

 </servlet>

 ...

</web-app>

You can retrieve the init parameters in the servlet's init() method, as follow:

@Override

public void init(ServletConfig config) throws ServletException {

 super.init(config);

 // Read the init params and save them in web context for use by

 // servlets and JSP within this web app.

 ServletContext context = config.getServletContext();

 context.setAttribute("databaseURL", config.getInitParameter("databaseURL"));

 context.setAttribute("user", config.getInitParameter("user"));

 context.setAttribute("password", config.getInitParameter("password"));

}

ServletContext

Each webapp is represented in a single context within the servlet container (such as Tomcat,

Glassfish). In Servlet API, this context is defined in javax.servlet.ServletContext interface (a

better name is probably WebappContext). A webapp may use many servlets. Servlets deployed in

the same webapp can share information between them using the shared ServletContext object.

There is one ServletContext per webapp (or web context). It can be retrieved

via ServletConfig.getServletContext(). A servlet can use it to communicate with its servlet

container (e.g., Tomcat, Glassfish), for example, to get the MIME type of a file, dispatch requests,

or write to a log file. ServletContext has an "application" scope, and can also be used to pass

information between servlets and JSPs within the same application, via

methods setAttribute("name", object) and getAttribute("name").

Example [TODO]

8. Developing and Deploying Web Applications

using IDE

It is a lot more productive and efficient to use an IDE (such as Eclipse or NetBeans) to develop

your web application. You could start/stop your servers from IDE directly. You could debug your

web application in IDE, like debugging standalone application.

NetBeans : Read "Developing and Deploying Web Applications in NetBeans".

Eclipse : Read "Developing and Deploying Web Applications in Eclipse".

9. Tomcat's Servlet Examples
Tomcat provides a number of excellent servlet examples in

"<CATALINA_HOME>\webapps\examples". The servlet source files are kept under

"<CATALINA_HOME>\webapps\examples\WEB-INF\classes", together with the compiled classes.

To run the examples, start Tomcat server and issue URL http://localhost:8080/examples.

I strongly encourage you to study the examples, Read "Tomcat's Java Servlet Examples

Explained".

https://www3.ntu.edu.sg/home/ehchua/programming/howto/NetBeans_HowTo.html#NetBeans_WebApp
https://www3.ntu.edu.sg/home/ehchua/programming/howto/EclipseJava_HowTo.html#EclipseWebapp
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletExamples.html
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletExamples.html

213

10. Database Servlet
Read "Java Servlet Case Study" and "Java Servlet Case Study Continue".

11. Servlet API – A Deeper Look

A servlet is a Java web component, managed by a servlet container (such as Apache Tomcat or

Glassfish), which generates dynamic content in response to client's request. A servlet container

(or servlet engine) is a web server extension which provides servlet functionality. A servlet

container contains and manages servlets throughout their life cycle.

11.1 Interface Servlet

The Servlet interface is the central abstraction of the Java servlet API. HttpServlet - the most

commonly servlet which handles HTTP requests, is a subclass of GenericServlet which

implements Servlet interface.

The Servlet interface declares these abstract methods:

// Servlet's lifecycle

void init(ServletConfig config)

void destroy()

void service(ServletRequest request, ServletResponse response)

// Servlet configuration and information

ServletConfig getServletConfig()

String getServletInfo()

11.2 A Servlet's Life cycle

A servlet's life cycle is managed via the init(), service() and destroy() methods.

Loading and Initialization

Servlet container (e.g., Tomcat or Glassfish) is responsible for loading and instantiating servlets. It

may load and instantiate servlets when it is started, or delay until it determines that the servlet is

needed to service a request (usually at the first request to the servlet).

https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletCaseStudy.html
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletCaseStudyPart2.html

214

The servlet container invokes the init(ServletConfig) method of the servlet, providing

a ServletConfig object as an argument. init() runs only once. It is usually used to read

persistent configuration data and initialize costly resource.

This ServletConfig object allows the servlet to access initialization parameters for this particular

servlet. These parameters are defined in the web application deployment descriptor file (i.e.,

“web.xml”), under the servlet's name, as follows:

<servlet>

 <servlet-name>ServletName</servlet-name>

 <servlet-class>ServletClassFile</servlet-class>

 <init-param>

 <param-name>initParam1</param-name>

 <param-value>initParam1Value</param-value>

 </init-param>

 <init-param>

 <param-name>initParam2</param-name>

 <param-value>initParam2Value</param-value>

 </init-param>

</servlet>

The ServletConfig interface defines these methods to retrieve the initialization parameters for

this servlet.

String getInitParameter(String name)

java.util.Enumeration getInitParameterNames()

For example,

public void init(ServletConfig config) throws ServletException {

 // Read all the init parameters for this servlet

 Enumeration e = config.getInitParameterNames();

 while (e.hasMoreElements()) {

 String initParamName = (String)e.nextElement();

 String initParamValue = config.getInitParameter(initParamName);

 }

}

The ServletConfig interface is implemented by HTTPServlet and GenericServlet. Hence,

the getInitParameter() and getInitParameterNames() method can be called directly

within init() or service().

The ServletConfig also gives servlet access to a ServletContext object that provides

information about this web context (aka web application). ServletContext will be discussed

later.

In Service

Once a servlet is initialized, the servlet container invokes its service() method to handle client

requests. This method is called once for each request. Generally, the servlet container handle

concurrent request to the same servlet by running service() on different threads

(unless SingleThreadModel interface is declared).

For HttpServlet, service() dispatches doGet(), doPost(), doHead(), doOptions(), doTrace(),

etc, to handle HTTP GET, POST, HEAD, OPTIONS, TRACE, etc, request respectively.

215

The service() method of an HttpServlet takes two arguments, an HttpServletRequest object

and an HttpServletResponse object that corresponds to the HTTP request and response

messages respectively.

End of Service

When the servlet container decides that a servlet should be removed from the container (e.g.,

shutting down the container or time-out, which is implementation-dependent), it calls

the destroy() method to release any resource it is using and save any persistent state. Before

the servlet container calls the destroy(), it must allow all service() threads to complete or

time-out.

11.3 Interface ServletContext

The ServletContext interface defines a servlet's view of the webapp (or web context) in which it

is running (a better name is actually ApplicationContext). Via the ServletContext object, a

servlet can communicate with the container, e.g., write to event log, get the URL reference to

resources, and get and set attributes that other servlets in the same context can access.

There is one ServletContext object for each web application deployed into a container. You can

specify initialization parameters for a web context (that are available to all the servlet under the

web context) in the web application deployment descriptor, e.g.,

<web-app>

 <context-param>

 <param-name>jdbcDriver</param-name>

 <param-value>com.mysql.jdbc.Driver</param-value>

 </context-param>

 <context-param>

 <param-name>databaseUrl</param-name>

 <param-value>jdbc:mysql://localhost/eshop</param-value>

 </context-param>

......

</web-app>

Servlets under this web context can access the context's initialization parameters via

the ServletConfig's methods:

// ServletConfig

String getInitParameter(String name)

java.util.Enumeration getInitParameterNames()

A servlet can bind an attribute of name-value pair into the ServletContext, which will then be

available to other servlet in the same web application. The methods available are:

// ServletContext

Object getAttribute(String name)

void setAttribute(String name, Object value)

void removeAttribute(String name)

java.util.Enumeration getAttributeNames()

Other methods in ServletContext are:

// Write message to event log

216

void log(String message)

// Get container info

String getServerInfo()

int getMajorVersion()

int getMinorVersion()

The ServletContext provides direct access to static content of the web application (such as

HTML, GIF files), via the following methods:

java.net.URL getResource(String path)

java.io.InputStream getResourceAsStream(String path)

11.4 Dispatch Request - RequestDispatcher

When building a web application, it is often useful to forward a request to another servlet, or to

include the output of another servlet in the response. The RequestDispatcher interface supports

these. The RequestDispatcher can be obtained via ServletContext:

// ServletContext

RequestDispatcher getRequestDispatcher(String servletPath)

RequestDispatcher getNamedDispatcher(String servletName)

Once the servlet obtained a RequestDispatcher of another servlet within the same web

application, it could include or forward the request to that servlet, e.g.,

RequestDispatcher rd = context.getRequestDispatcher("/test.jsp?isbn=123");

rd.include(request, response);

// or

rd.forward(request, response);

11.5 Filtering

A filter is a reusable piece of code that can transform the content of HTTP requests, responses,

and header information. Examples of filtering components are:

 Authentication filters

 Logging and auditing filters

 Image conversion filters

 Data compression filters

 Encryption filters

 Tokenizing filters

 Filters that trigger resource access events

 XSL/T filters that transform XML content

 MIME-type chain filters

 Caching filters

[TODO] more

12. Web Application Deployment Descriptor

"web.xml"

217

The "web.xml" contains the web application deployment descriptors. Tomcat's has a system-wide

(global) "web.xml" in "<CATALINA_HOME>\conf". Each web application has its own "web.xml" in

"ContextRoot\WEB-INF", which overrides the global settings. Tomcat monitors web.xml for all

web applications and reloads the web application when web.xml changes, if reloadable is set

to true.

12.1 A Sample "web.xml"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="3.0"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

 <!-- General Description of the web application -->

 <display-name>Workshop Continue</display-name>

 <description>We shall continue our e-bookstore...</description>

 <!-- Context initialization parameters -->

 <!-- Provide the database related parameters -->

 <context-param>

 <param-name>jdbcDriver</param-name>

 <param-value>com.mysql.jdbc.Driver</param-value>

 </context-param>

 <context-param>

 <param-name>databaseUrl</param-name>

 <param-value>jdbc:mysql://localhost/eshop</param-value>

 </context-param>

 <!-- Define servlets -->

 <servlet>

 <servlet-name>BookQuery</servlet-name>

 <servlet-class>BookQueryServlet</servlet-class>

 <init-param>

 <param-name>popularAuthor</param-name>

 <param-value>Kelvin Jones</param-value>

 </init-param>

 </servlet>

 <!-- Define servlet's URL mapping -->

 <servlet-mapping>

 <servlet-name>BookQuery</servlet-name>

 <url-pattern>/query</url-pattern>

 </servlet-mapping>

 <session-config>

 <session-timeout>30</session-timeout>

 </session-config>

 <mime-mapping>

218

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

 <extension>pdf</extension>

 <mime-type>application/pdf</mime-type>

 </mime-mapping>

 <!-- For directory request -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 <welcome-file>index.htm</welcome-file>

 </welcome-file-list>

 <error-page>

 <error-code>404</error-code>

 <location>/404.html</location>

 </error-page>

</web-app>

12.2 Syntax for "web.xml"

Servlets 3.0 "web.xml" Syntax

Tomcat 7 and Glassfish 3.1 supports Servlet 3.0.

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="3.0"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

 metadata-complete="true">

</web-app>

Servlets 2.5 "web.xml" Syntax

Tomcat 6 and Glassfish 3 supports Servlets 2.5, JSP 2.1 and JSF 2.0.

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="2.5"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

</web-app>

Servlets 2.4 "web.xml" Syntax

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="2.4"

 xmlns="http://java.sun.com/xml/ns/j2ee"

219

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

</web-app>

12.3 Servlet Deployment Descriptor

To deploy a servlet, you need to write one pair of <servlet> and <servlet-mapping> elements,

with a matching (but arbitrary and unique) <servlet-name>. The <servlet-class> specifies the

fully-qualified name of the servlet class. The <url-pattern> specifies the URL. For example,

<web-app ...>

 <servlet>

 <servlet-name>ServletName</servlet-name>

 <servlet-class>mypkg.MyServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>ServletName</servlet-name>

 <url-pattern>/MyURL</url-pattern>

 </servlet-mapping>

</web-app>

The resultant URL is http://hostname:port/WebContext/MyURL.

You can use wildcard '*' in the <url-pattern> for pattern matching. For

example, /MyURL.* (which is matched by /MyURL.html and etc.), /MyURL/* (which is matched

by /MyURL/test, and etc.)

Always use a custom URL for servlet, as you could choose a short and meaningful URL and

include initialisation. parameters, filter, security setting in the deployment descriptor (see the next

section).

12.4 Servlet Initialization Parameters

You can pass initialization parameters in the form of name-value pairs into a particular servlet

from "web.xml". For example,

<web-app ...>

 <servlet>

 <servlet-name>ServletName</servlet-name>

 <servlet-class>mypkg.MyServlet</servlet-class>

 <init-param>

 <param-name>debug</param-name>

 <param-value>false</param-value>

 </init-param>

 <init-param>

 <param-name>listing</param-name>

 <param-value>true</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

220

 <servlet-name>ServletName</servlet-name>

 <url-pattern>/MyURL</url-pattern>

 </servlet-mapping>

</web-app>

Inside the servlet, you can retrieve the init parameters via the ServletConfig object:

package mypkg;

public class MyServlet extends HttpServlet {

 private boolean debug = false, listing = false;

 @Override

 public void init() {

 ServletConfig config = getServletConfig();

 String strDebug = config.getInitParameter("debug");

 if (strDebug.equals("true")) debug = true;

 String strListing = config.getInitParameter("listing");

 if (strListing.equals("true")) listing = true;

 }

}

12.5 Application Initialization Parameters

Specified in webapp's "WEB-INF\web.xml", and available to all the servlets under this webapp.

You can use the getInitParameter() method of ServletContext object to retrieve the init

parameters.

<web-app>

 <context-param>

 <param-name>email</param-name>

 <param-value>query@abcde.com</param-value>

 </context-param>

</web-app>

12.6 Server-wide Initialization Parameters

Similar to application init parameters, but defined in the global

"<CATALINA_HOME>\conf\web.xml".

<context-param>

 <param-name>email</param-name>

 <param-value>query@abcde.com</param-value>

</context-param>

Use the getInitParameter() method of ServletContext object to retrieve the init parameters.

221

12.7 Welcome Page

Specifies the page to be displayed for request to web context root. For example,

<web-app ...>

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 <welcome-file>test/index.html</welcome-file>

 </welcome-file-list>

</web-app>

13. Servlet 3.0
Servlet API 3.0 introduces these annotations to simplify deployment

in javax.servlet.annotation package:

 @WebServlet: Define a servlet component

 @WebInitParam: Define initialization parameters for a servlet

 @WebListener: Define a listener

 @WebFilter: Define a filter

 @MultipartConfig: For multipart file upload

For example,

@WebServlet(

 name = "HelloServletExample",

 urlPatterns = {"/sayhello"},

 initParams = {

 @WebInitParam(name = "param1", value = "value1"),

 @WebInitParam(name = "param2", value = "value2")}

)

public class HelloServlet extends HttpServlet { }

The above is equivalent to the following configuration in "web.xml" prior to Servlet 3.0. The web

application deployment descriptor "web.xml" has become optional in Servlet 3.0. Instead, the

container at run time will process the annotations of the classes in WEB-INF/classes and JAR

files in lib directory.

// web.xml

<servlet>

 <servlet-name>HelloServletExample</servlet-name>

 <servlet-class>hello.HelloServlet</servlet-class>

 <init-param>

 <param-name>param1</param-name>

 <param-value>value1</param-value>

 </init-param>

 <init-param>

 <param-name>param2</param-name>

 <param-value>value2</param-value>

 </init-param>

222

</servlet>

<servlet-mapping>

 <servlet-name>HelloServletExample</servlet-name>

 <url-pattern>/sayhello</url-pattern>

</servlet-mapping>

13.1 @WebServlet

@WebServlet defines a servlet component and its metadata, with the following attributes:

 String[] urlPatterns: An array of String declaring the url-pattern for servlet-mapping.

Default is an empty array {}.

 String[] value: urlPatterns.

 String name: servlet-name, default is empty string "".

 loadOnStartup: The load-on-startup order of the servlet, default is -1.

 WebInitParam[] initParams: The init parameters of the servlet, default is an empty

array {}.

 boolean asyncSupported: Declares whether the servlet supports asynchronous operation

mode, default is false.

 String smallIcon, String largeIcon, String description: icon and description of the

servlet.

Example:

@WebServlet("/sayHello")

public class Hello1Servlet extends HttpServlet { }

 // One URL pattern

@WebServlet(urlPatterns = {"/sayhello", "/sayhi"})

public class Hello2Servlet extends HttpServlet { }

 // More than one URL patterns

13.2 @WebInitParam

@WebInitParam is Used to declare init params in servlet, with the following attributes:

 String name and String value (required): Declare the name and value of the init

parameter.

 String description (optional) description, default empty string "".

See the above example.

13.3 @WebFilter

@WebFilter defines a filter (which implements javax.servlet.Filter interface).

For example, the following filter log the request time for all the requests (urlPattern="/*").

1

2

3

4

5

6

7

8

package mypkg;

import java.io.*;

import java.util.logging.Logger;

import javax.servlet.*;

import javax.servlet.annotation.*;

import javax.servlet.http.*;

223

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

@WebFilter(urlPatterns={"/*"})

public class RequestTimerFilter implements Filter {

 private static final Logger logger

 = Logger.getLogger(RequestTimerFilter.class.getName());

 @Override

 public void init(FilterConfig config) throws ServletException {

 logger.info("RequestTimerFilter initialized");

 }

 @Override

 public void doFilter(ServletRequest request, ServletResponse response,

 FilterChain chain)

 throws IOException, ServletException {

 long before = System.currentTimeMillis();

 chain.doFilter(request, response);

 long after = System.currentTimeMillis();

 String path = ((HttpServletRequest)request).getRequestURI();

 logger.info(path + ": " + (after - before) + " msec");

 }

 @Override

 public void destroy() {

 logger.info("RequestTimerFilter destroyed");

 }

}

13.4 @WebListener

@WebListener defines a listener (which

extends ServletContexListner, ServletRequestListner or HttpSessionListner). For example,

@WebListener()

public class MyContextListner extends ServletContextListner { }

13.5 @MultipartConfig

For uploading file using multipart/form-data POST Request. Read "Uploading Files in Servlet

3.0".

 UNIT: 2

JDBC: Java Database Connectivity (JDBC) is an application programming interface (API) for the

programming language Java, which defines how a client may access a database. ... It provides
methods to query and update data in a database, and is oriented towards relational databases.

Fundamental Steps in JDBC

https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletCaseStudyPart2.html#FileUpload
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletCaseStudyPart2.html#FileUpload

224

The fundamental steps involved in the process of connecting to a database and executing a query consist of the following:

 Import JDBC packages.

 Load and register the JDBC driver.

 Open a connection to the database.

 Create a statement object to perform a query.

 Execute the statement object and return a query resultset.

 Process the resultset.

 Close the resultset and statement objects.

 Close the connection.

These steps are described in detail in the sections that follow.

Import JDBC Packages
This is for making the JDBC API classes immediately available to the application program. The following import statement
should be included in the program irrespective of the JDBC driver being used:

import java.sql.*;

Additionally, depending on the features being used, Oracle-supplied JDBC packages might need to be imported. For example,
the following packages might need to be imported while using the Oracle extensions to JDBC such as using advanced data
types such as BLOB, and so on.

import oracle.jdbc.driver.*;

import oracle.sql.*;

Load and Register the JDBC Driver
This is for establishing a communication between the JDBC program and the Oracle database. This is done by using the

static registerDriver() method of the DriverManager class of the JDBC API. The following line of code does this job:

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

JDBC Driver Registration

For the entire Java application, the JDBC driver is registered only once per each database that needs to be accessed. This is
true even when there are multiple database connections to the same data server.

Alternatively, the forName() method of the java.lang.Class class can be used to load and register the JDBC driver:

225

Class.forName("oracle.jdbc.driver.OracleDriver");

However, the forName() method is valid for only JDK-compliant Java Virtual Machines and implicitly creates an instance of

the Oracle driver, whereas the registerDriver() method does this explicitly.

Connecting to a Database
Once the required packages have been imported and the Oracle JDBC driver has been loaded and registered, a database

connection must be established. This is done by using the getConnection() method of the DriverManager class. A call to

this method creates an object instance of the java.sql.Connection class. The getConnection() requires three input

parameters, namely, a connect string, a username, and a password. The connect string should specify the JDBC driver to be
yes and the database instance to connect to.

The getConnection() method is an overloaded method that takes

 Three parameters, one each for the URL, username, and password.

 Only one parameter for the database URL. In this case, the URL contains the username and password.

The following lines of code illustrate using the getConnection() method:

Connection conn = DriverManager.getConnection(URL, username, passwd);

Connection conn = DriverManager.getConnection(URL);

where URL, username, and passwd are of String data types.

We will discuss the methods of opening a connection using the Oracle JDBC OCI and thin _drivers.

When using the OCI driver, the database can be specified using the TNSNAMES entry in the tnsnames.ora file. For example,
to connect to a database on a particular host as user oratest and password oratest that has a TNSNAMES entry of
oracle.world, use the following code:

Connection conn = DriverManager.getConnection("jdbc:oracle:oci8:

@oracle.world", "oratest", "oratest");

Both the ":" and "@" are mandatory.

When using the JDBC thin driver, the TNSNAMES entry cannot be used to identify the database. There are two ways of
specifying the connect string in this case, namely,

 Explicitly specifying the hostname, the TCP/IP port number, and the Oracle SID of the database to connect to. This is for
thin driver only.

 Specify a Net8 keyword-value pair list.

For example, for the explicit method, use the following code to connect to a database on host training where the TCP/IP

listener is on port 1521, the SID for the database instance is Oracle, the username and password are both oratest:

Connection conn = DriverManager.getConnection

226

 ("jdbc:oracle:thin:@training:1521:Oracle",

 "oratest", "oratest");

For the Net8 keyword-value pair list, use the following:

Connection conn = DriverManager.getConnection

 ("jdbc:oracle:thin@(description=(address=

 (host=training)(protocol=tcp)(port=1521))

 (connect_data=(sid=Oracle))) ", _"oratest", "oratest");

This method can also be used for the JDBC OCI driver. Just specify oci8 instead of thin in the above keyword-value pair list.

Querying the Database
Querying the database involves two steps: first, creating a statement object to perform a query, and second, executing the
query and returning a resultset.

Creating a Statement Object
This is to instantiate objects that run the query against the database connected to. This is done by

the createStatement() method of the conn Connection object created above. A call to this method creates an object

instance of the Statement class. The following line of code illustrates this:

Statement sql_stmt = conn.createStatement();

Executing the Query and Returning a ResultSet
Once a Statement object has been constructed, the next step is to execute the query. This is done by using

the executeQuery() method of the Statement object. A call to this method takes as parameter a SQL SELECT statement

and returns a JDBC ResultSet object. The following line of code illustrates this using the sql_stmt object created above:

ResultSet rset = sql_stmt.executeQuery

 ("SELECT empno, ename, sal, deptno FROM emp ORDER BY ename");

Alternatively, the SQL statement can be placed in a string and then this string passed to the executeQuery() function. This is
shown below.

String sql = "SELECT empno, ename, sal, deptno FROM emp ORDER BY ename";

227

ResultSet rset = sql_stmt.executeQuery(sql);

Statement and ResultSet Objects

Statement and ResultSet objects open a corresponding cursor in the database for SELECT and other DML statements.

The above statement executes the SELECT statement specified in between the double quotes and stores the resulting rows in

an instance of the ResultSet object named rset.

Processing the Results of a Database Query That Returns Multiple Rows
Once the query has been executed, there are two steps to be carried out:

 Processing the output resultset to fetch the rows

 Retrieving the column values of the current row

The first step is done using the next() method of the ResultSet object. A call to next() is executed in a loop to fetch the

rows one row at a time, with each call to next() advancing the control to the next available row. The next() method returns

the Boolean value true while rows are still available for fetching and returns false when all the rows have been fetched.

The second step is done by using the getXXX() methods of the JDBC rset object. Here getXXX() corresponds to

the getInt(), getString() etc with XXX being replaced by a Java datatype.

The following code demonstrates the above steps:

String str;

while (rset.next())

 {

 str = rset.getInt(1)+ " "+ rset.getString(2)+ "

 "+rset.getFloat(3)+ " "rset.getInt(4)+ "\n";

 }

byte buf[] = str.getBytes();

OutputStream fp = new FileOutputStream("query1.lst");

fp.write(buf);

fp.close();

Here the 1, 2, 3, and 4 in rset.getInt(), rset.getString(), getFloat(), and getInt() respectively denote the

position of the columns in the SELECT statement, that is, the first column empno, second column ename, third column sal,

and fourth column deptno of the SELECT statement respectively.

Specifying get() Parameters

228

The parameters for the getXXX() methods can be specified by position of the corresponding columns as numbers 1, 2, and so

on, or by directly specifying the column names enclosed in double quotes, as getString("ename") and so on, or a

combination of both.

Closing the ResultSet and Statement
Once the ResultSet and Statement objects have been used, they must be closed explicitly. This is done by calls to

the close() method of the ResultSet and Statement classes. The following code illustrates this:

rset.close();

sql_stmt.close();

If not closed explicitly, there are two disadvantages:

 Memory leaks can occur

 Maximum Open cursors can be exceeded

Closing the ResultSet and Statement objects frees the corresponding cursor in the database.

Closing the Connection
The last step is to close the database connection opened in the beginning after importing the packages and loading the JDBC

drivers. This is done by a call to the close() method of the Connection class.

The following line of code does this:

conn.close();

Explicitly Close your Connection

Closing the ResultSet and Statement objects does not close the connection. The connection should be closed by explicitly

invoking the close() method of the Connection class.

A complete example of the above procedures using a JDBC thin driver is given below. This program queries the emp table and
writes the output rows to an operating system file.

//Import JDBC package

import java.sql.*;

// Import Java package for File I/O

import java.io.*;

public class QueryExample {

 public static void main (String[] args) throws SQLException, IOException

{

229

 //Load and register Oracle driver

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 //Establish a connection

 Connection conn = DriverManager.getConnection("jdbc:oracle:thin:

 @training:1521:Oracle", "oratest", "oratest");

 //Create a Statement object

 Statement sql_stmt = conn.createStatement();

 //Create a ResultSet object, execute the query and return a

 // resultset

 ResultSet rset = sql_stmt.executeQuery("SELECT empno, ename, sal,

 deptno FROM emp ORDER BY ename");

 //Process the resultset, retrieve data in each row, column by column

 //and write to an operating system file

String str = "";

while (rset.next())

 {

 str += rset.getInt(1)+" "+ rset.getString(2)+" "+

 rset.getFloat(3)+" "+rset.getInt(4)+"\n";

 }

 byte buf[] = str.getBytes();

OutputStream fp = new FileOutputStream("query1.lst");

230

fp.write(buf);

fp.close();

//Close the ResultSet and Statement

 rset.close();

 sql_stmt.close();

 //Close the database connection

 conn.close();

 }

}

Processing the Results of a Database Query That Returns a Single Row
The above sections and the complete example explained the processing of a query that returned multiple rows. This section
highlights the processing of a single-row query and explains how to write code that is the analogue of the PL/SQL

exception NO_DATA_FOUND.
NO DATA FOUND Exception

NO_DATA_FOUND exception in PL/SQL is simulated in JDBC by using the return value of the next() method of

the ResultSet object. A value of false returned by the next() method identifies a NO_DATA_FOUND exception.

Consider the following code (this uses the ResultSet object rset defined in the above sections):

if (rset.next())

 // Process the row returned

else

 System.out.println("The Employee with Empno "+ args[1] +

 "does not exist");

Instead of the while loop used earlier, an if statement is used to determine whether the SELECT statement returned a row or
not.

Datatype Mappings

231

Corresponding to each SQL data type, there exist mappings to the corresponding JDBC Types, standard Java types, and the
Java types provided by Oracle extensions. These are required to be used in JDBC programs that manipulate data and data
structures based on these types.

There are four categories of Data types any of which can be mapped to the others. These are:

 SQL Data types—These are Oracle SQL data types that exist in the database.

 JDBC Typecodes—These are the data typecodes supported by JDBC as defined in the java.sql.Types class or

defined by Oracle in oracle.jdbc.driver.OracleTypes class.

 Java Types—These are the standard types defined in the Java language.

 Oracle Extension Java Types—These are the Oracle extensions to the SQL data types and are defined in

the oracle.sql.* class. Mapping SQL data types to the oracle.sql.* Java types enables storage and retrieval of

SQL data without first converting into Java format thus preventing any loss of information.
Table 3.1 lists the default mappings existing between these four different types.

Table 3.1 Standard and Oracle-specific SQL-Java Data Type Mappings

SQL Data
types

JDBC Type codes Standard Java
Types

Oracle Extension Java _
Types

Standard JDBC 1.0 Types

CHAR java.sql.Types.CHAR java.lang.String oracle.sql.CHAR

VARCHAR2 java.sql.Types.VARCHAR java.lang.String oracle.sql.CHAR

LONG java.sql.Types.
LONGVARCHAR

java.lang.String oracle.sql.CHAR_

NUMBER java.sql.Types.NUMERIC java.math.BigDecim
al

oracle.sql.NUMBER

NUMBER java.sql.Types.DECIMAL java.math.BigDecim
al

oracle.sql.NUMBER

NUMBER java.sql.Types.BIT Boolean oracle.sql.NUMBER

NUMBER java.sql.Types.TINYINT byte oracle.sql.NUMBER

NUMBER java.sql.Types.SMALLINT short oracle.sql.NUMBER

NUMBER java.sql.Types.INTEGER int oracle.sql.NUMBER

NUMBER java.sql.Types.BIGINT long oracle.sql.NUMBER

232

SQL Data
types

JDBC Type codes Standard Java
Types

Oracle Extension Java _
Types

NUMBER java.sql.Types.REAL float oracle.sql.NUMBER

NUMBER java.sql.Types.FLOAT double oracle.sql.NUMBER

NUMBER java.sql.Types.DOUBLE double oracle.sql.NUMBER

RAW java.sql.Types.BINARY byte[] oracle.sql.RAW

RAW java.sql.Types.VARBINARY byte[] oracle.sql.RAW

LONGRAW java.sql.Types.LONGVARBINA
RY

byte[] oracle.sql.RAW

DATE java.sql.Types.DATE java.sql.Date oracle.sql.DATE

DATE java.sql.Types.TIME java.sql.Time oracle.sql.DATE

DATE java.sql.Types.TIMESTAMP javal.sql.Timestamp oracle.sql.DATE

Standard JDBC 2.0 Types

BLOB java.sql.Types.BLOB java.sql.Blob Oracle.sql.BLOB

CLOB Java.sql.Types.CLOB java.sql.Clob oracle.sql.CLOB

user-defined java.sql.Types.STRUCT java.sql.Struct oracle.sql.STRUCT_object

user-defined java.sql.Types.REF java.sql.Ref oracle.sql.REF_reference

user-defined java.sql.Types.ARRAY java.sql.Array oracle.sql.ARRAY_collecti
on

Oracle Extensions

BFILE oracle.jdbc.driver. n/a OracleTypes.BFILE

233

SQL Data
types

JDBC Type codes Standard Java
Types

Oracle Extension Java _
Types

oracle.sql.BFILE_

ROWID oracle.jdbc.driver.
oracle.sql.ROWID_

n/a OracleTypes.ROWID

REFCURSO
R type

oracle.jdbc.driver.
OracleTypes.CURSOR

java.sql.ResultSet oracle.jdbc.driver._

OracleResultSet

Exception Handling in JDBC
Like in PL/SQL programs, exceptions do occur in JDBC programs. Notice how the NO_DATA_FOUND exception was simulated

in the earlier section "Processing the Results of a Database Query That Returns a Single Row."
Exceptions in JDBC are usually of two types:

 Exceptions occurring in the JDBC driver

 Exceptions occurring in the Oracle 8i database itself

Just as PL/SQL provides for an implicit or explicit RAISE statement for an exception, Oracle JDBC programs have

a throw statement that is used to inform that JDBC calls throw the SQL exceptions. This is shown below.

throws SQLException

This creates instances of the class java.sql.SQLException or a subclass of it.

And, like in PL/SQL, SQL exceptions in JDBC have to be handled explicitly. Similar to PL/SQL exception handling sections,

Java provides a try..catch section that can handle all exceptions including SQL exceptions. Handling an exception can

basically include retrieving the error code, error text, the SQL state, and/or printing the error stack trace.

The SQLException class provides methods for obtaining all of this information in case of error conditions.

Retrieving Error Code, Error Text, and SQL State
There are the methods getErrorCode() and getMessage() similar to the functions SQLCODE and SQLERRM in PL/SQL. To

retrieve the SQL state, there is the method getSQLState(). A brief description of these methods is given below:

 getErrorCode()

 This function returns the five-digit ORA number of the error in case of exceptions occurring in the JDBC driver as well as
in the database.

 getMessage()

 This function returns the error message text in case of exceptions occurring in the JDBC driver. For exceptions occurring
in the database, this function returns the error message text prefixed with the ORA number.

 getSQLState()

 This function returns the five digit code indicating the SQL state only for exceptions occurring in the database.

The following code illustrates the use of exception handlers in JDBC:

234

try { <JDBC code> }

catch (SQLException e) { System.out.println("ERR: "+ e.getMessage())}

We now show the QueryExample class of the earlier section with complete exception handlers built in it. The code is as

follows:

//Import JDBC package

import java.sql.*;

// Import Java package for File I/O

import java.io.*;

public class QueryExample {

 public static void main (String[] args) {

 int ret_code;

 try {

 //Load and register Oracle driver

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 //Establish a connection

 Connection conn = DriverManager.getConnection("jdbc:oracle:thin:

 @training:1521:Oracle", "oratest", "oratest");

 //Create a Statement object

 Statement sql_stmt = conn.createStatement();

 //Create a ResultSet object, execute the query and return a

 // resultset

235

 ResultSet rset = sql_stmt.executeQuery("SELECT empno, ename, sal,

 deptno FROM emp ORDER BY ename");

 //Process the resultset, retrieve data in each row, column by column

 // and write to an operating system file

String str = "";

while (rset.next())

 {

 str += rset.getInt(1)+" "+ rset.getString(2)+" "+rset.getFloat(3)+

 " "+rset.getInt(4)+"\n";

 }

 byte buf[] = str.getBytes();

OutputStream fp = new FileOutputStream("query1.lst");

fp.write(buf);

fp.close();

//Close the ResultSet and Statement

 rset.close();

 sql_stmt.close();

 //Close the database connection

 conn.close();

} catch (SQLException e) {ret_code = e.getErrorCode();

 System.err.println("Oracle Error: "+ ret_code + e.getMessage());}

236

 catch (IOException e) {System.out.println("Java Error: "+

 e.getMessage()); }

 }

}

Printing Error Stack Trace
The SQLException has the method printStackTrace() for printing an error stack trace. This method prints the stack trace

of the throwable object to the standard error stream.
The following code illustrates this:

catch (SQLException e) { e.printStackTrace(); }

JAVABEANS:

1. How to Install NetBeans 8.2

1.1 How to Install NetBeans on Windows

Step 0: Install JDK

To use NetBeans for Java programming, you need to first install Java Development Kit (JDK). See "JDK - How to

Install".

Step 1: Download

Download "NetBeans IDE" installer from http://netbeans.org/downloads/index.html. There are many "bundles"

available. For beginners, choose the 1st entry "Java SE" (e.g., "netbeans-8.2-javase-windows.exe" 95MB).

Step 2: Run the Installer

Run the downloaded installer.

1.2 How to Install NetBeans on Mac OS X

To use NetBeans for Java programming, you need to first install JDK. Read "How to install JDK on Mac".

To install NetBeans:

9. Download NetBeans from http://netbeans.org/downloads/. Set "Platform" to "Mac OS X". There are many

"bundles" available. For beginners, choose "Java SE" (e.g., "netbeans-8.2-javase-macosx.dmg"

116MB).

10. Double-click the download Disk Image (DMG) file.

11. Double-click the "NetBeans 8.x.mpkg", and follow the instructions to install NetBeans. NetBeans will

be installed under "/Applications/NetBeans".

12. Eject the Disk Image (".dmg").

You can launch NetBeans from the "Applications".

Notes: To uninstall NetBeans, drag the "/Applications/NetBeans" folder to trash.

1.3 How to Install NetBeans on Ubuntu Linux

To use NetBeans for Java programming, you need to first install JDK. Read "How to install JDK on Ubuntu".

https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html
http://netbeans.org/downloads/index.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html#jdk_mac
http://netbeans.org/downloads/
https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html#jdk_ubuntu

237

To install NetBeans:

9. Download NetBeans from http://netbeans.org/downloads/. Choose platform "Linux (x86/x64)" ⇒ "Java

SE". You shall receive a sh file (e.g., "netbeans-7.x-ml-javase-linux.sh") in "~/Downloads".

10. Set the downloaded sh file to executable and run the sh file. Open a Terminal:

11. $ cd ~/Downloads
12. $ chmod a+x netbeans-7.x-ml-javase-linux.sh // Set to executable for all (a+x)

$./netbeans-7.x-ml-javase-linux.sh // Run

Follow the instructions to install NetBeans.

To start NetBeans, run the script "netbeans" in the NetBeans' bin directory:

$ cd netbeans-bin-directory
$./netbeans

2. Writing a Hello-world Java Program in NetBeans

Step 0: Launch NetBeans

Launch NetBeans. If the "Start Page" appears, close it by clicking the "cross" button next to the "Start Page" title.

Step 1: Create a New Project

For each Java application, you need to create a "project" to keep all the source files, classes and relevant

resources.

7. From "File" menu ⇒ Choose "New Project...".

8. The "Choose Project" diglog pops up ⇒ Under "Categories", choose "Java" ⇒ Under "Projects", choose

"Java Application" ⇒ "Next".

9. The "Name and Location" dialog pops up ⇒ Under "Project Name", enter "FirstProject" ⇒ In "Project

Location", select a suitable directory to save your works ⇒ Uncheck "Use Dedicated Folder for Storing

Libraries" ⇒ Uncheck "Create Main class" ⇒ Finish.

Step 2: Write a Hello-world Java Program

15. Right-click on "FirstProject" ⇒ New ⇒ Java Class (OR choose the "File" menu ⇒ "New File..." ⇒

Categories: "Java", File Types: "Java Class" ⇒ "Next").

16. The "Name and Location" dialog pops up ⇒ In "Class Name", enter "Hello" ⇒ Delete the content in

"Package" if it is not empty ⇒ "Finish".

17. The source file "Hello.java" appears in the editor panel. Enter the following codes:

18. public class Hello {
19. public static void main(String[] args) {
20. System.out.println("Hello, world");
21. }

}

Step 3: Compile & Execute

There is no need to "compile" the source code in NetBeans explicitly, as NetBeans performs the so-

called incremental compilation (i.e., the source statement is compiled as and when it is entered).

To run the program, right-click anywhere in the source (or from the "Run" menu) ⇒ Run File. Observe the output

on the output console.

Notes:

 You should create a NEW Java project for EACH of your Java application.

 Nonetheless, NetBeans allows you to keep more than one programs in a project, which is handy for writing

toy programs (such as your tutorial exercises). To run a particular program, open and right-click on the

source file ⇒ Run File.

2.1 Correcting Syntax Error

NetBeans performs incremented compilation, as and when a source line is entered. It marked a source line with

syntax error with a RED CROSS. Point your cursor at the RED CROSS to view the error message.

http://netbeans.org/downloads/

238

You CANNOT RUN the program if there is any syntax error (marked by a RED CROSS before the filename). Correct

all the syntax errors; and RUN the program.

[TODO] Diagram

HINTS: In some cases, NetBeans shows a ORANGE LIGHT-BULB (for HINTS) next to the ERROR RED-CROSS (Line 5

in the above diagram). You can click on the LIGHT-BULB to get a list of HINTS to resolve this particular error,

which may or may not work!

SYNTAX WARNING: marked by a orange triangular exclaimation sign. Unlike errors, warnings may or may not

cause problems. Try to fix these warnings as well. But you can RUN your program with warnings.

3. Read the NetBeans Documentation

At a minimum, you SHOULD READ the "IDE Basics, Getting Started, Java Application", which is accessible via

NetBeans's "HELP" menu ⇒ Help Contents. This will save you many agonizing hours trying to figure out how to

do somethings later.

The "Help" ⇒ "Online Doc and Support" (@ http://netbeans.org/kb/index.html) contains many articles and

tutorial on using NetBeans.

The NetBeans "Start Page" also provides many useful links to get you started.

4. Debugging Program in NetBeans

Step 0: Write a Java Program

The following program computes and prints the factorial of n (=1*2*3*...*n). The program, however, has a

logical error and produce a wrong answer for n=20 ("The Factorial of 20 is -2102132736" - a

negative number?!).

1
2
3
4
5
6
7
8
9
10
11
12
13
14

/** Compute the factorial of n */
public class Factorial {
 // Print factorial of n
 public static void main(String[] args) {
 int n = 20;
 int factorial = 1;

 // n! = 1*2*3...*n
 for (int i = 1; i <= n; i++) {
 factorial *= i;
 }
 System.out.println("The Factorial of " + n + " is " + factorial);
 }
}

Let us use the graphic debugger to debug the program.

Step 1: Set an initial Breakpoint

A breakpoint suspends program execution for you to examine the internal states of the program. Before starting

the debugger, you need to set at least one breakpoint to suspend the execution inside the program. Set a

breakpoint at main() method by clicking on the left-margin of the line containing main(). A red circle or an

inverted Triangle appears in the left-margin indicating a breakpoint is set at that line.

Step 2: Start Debugging

Right click anywhere on the source code ⇒ "Debug File". The program begins execution but suspends its

operation at the breakpoint, i.e., the main() method.

As illustrated in the following diagram, the highlighted line (also pointed to by a green arrow) indicates the

statement to be executed in the next step.

http://netbeans.org/kb/index.html

239

Step 3: Step-Over and Watch the Variables and Outputs

Click the "Step Over" button (or select "Step Over" in "Debug" menu) to single-step thru your program. At each of

the step, examine the value of the variables (in the "Variable" panel) and the outputs produced by your program

(in the "Output" Panel), if any. You can also place your cursor at any variable to inspect the content of the

variable.

Single-stepping thru the program and watching the values of internal variables and the outputs produced is

the ultimate mean in debugging programs - because it is exactly how the computer runs your program!

Step 4: Breakpoint, Run-To-Cursor, Continue and Finish

As mentioned, a breakpoint suspends program execution and let you examine the internal states of the program.

To set a breakpoint on a particular statement, click on the left-margin of that line (or select "Toggle Breakpoint"

from "Run" menu).

"Continue" resumes the program execution, up to the next breakpoint, or till the end of the program.

"Single-step" thru a loop with a large count is time-consuming. You could set a breakpoint at the statement

immediately outside the loop (e.g., Line 11 of the above program), and issue "Continue" to complete the loop.

Alternatively, you can place the cursor on a particular statement, and issue "Run-To-Cursor" to resume execution

up to the line.

"Finish" ends the debugging session. Always terminate your current debugging session using "Finish" or

"Continue" till the end of the program.

4.1 Other Debugger's Features:

Modify the Value of a Variable

You can modify the value of a variable by entering a new value in the "Variable" panel. This is handy for

temporarily modifying the behaviour of a program, without changing the source code.

Step-Into and Step-Out

To debug a method, you need to use "Step-Into" to step into the first statement of the method. You could use

"Step-Out" to return back to the caller, anywhere within the method. Alternatively, you could set a breakpoint

inside a method.

5. NetBeans - Tips & Tricks

5.1 General Usage

These are the features that I find to be most useful in NetBeans:

37. Maximizing Window (double-click): You can double-click on the "header" of any panel

to maximize that particular panel, and double-click again to restore it back. This is particularly useful for

editing source code in full panel.

38. Code Auto-Complete (or Intelli-Sense) (ctrl-space): Enter a partial statement (e.g., Sys) and

press control-space to activate the auto-complete, which displays all the available choices.

39. Javadoc (ctrl-space, alt-F1): Place the cursor on a method or class, and press ctrl-space to view

the javadoc; or right-click ⇒ Show Javadoc (alt-F1) to open it on a browser.

40. Code Shorthand (tab): For example, you can enter "sout" and press TAB for

"System.out.println"; "psvm" for "public static void main(String[] args) { }" or

"fori" + tab for a for-loop. To view and configure code template, choose "Tools" menu ⇒ "Options" ⇒

"Editor" ⇒ "Code Templates".

41. Formatting Source Code (alt-shift-f): Right-click on the source (or from the "Source" menu) ⇒

Choose "Format". NetBeans will layout your source codes with the proper indents and format. To

configure the formatting, choose "Tools" menu ⇒ "Options" ⇒ "Editor" ⇒ "Formatting".

You can also select the section of codes to be formatted, instead of the entire file.

42. Hints for Correcting Syntax Error: If there is a syntax error on a statement, a red mark will show

up on the left-margin on that statement. You could click on the "light bulb" to display the error message,

and also select from the available hints for correcting that syntax error.

240

43. Rename (Refactor) (ctrl-r): To rename a variable, place the cursor on that variable, right-click ⇒

"Refactor" ⇒ "Rename" ⇒ Enter the new name. All the appearances of that variables in the project will be

renamed.

44. Small Programs: You can keep many small toy programs (with main()) in one Java project instead of

create a new project for each small program. To run the desired program, on the "editor" panel ⇒ right-

click ⇒ "Run File".

45. Source Toggle Comment: To temporarily comment-off a block of codes, choose "Source" ⇒

"Toggle Comment".

46. Error Message Hyperlink: Click on an error message will hyperlink to the corresponding source

statement.

47. Command-Line Arguments: To provide command-line arguments to your Java program in

NetBeans, right-click on the "project" ⇒ "Set as Main Project" ⇒ "Set Configurations" ⇒ "Customize..." ⇒

"Run" ⇒ select the "Main" class ⇒ type your command-line arguments inside the "Arguments" field ⇒

choose "Run" menu ⇒ "Run Main Project".

48. Line Numbers: To show the line numbers, right-click on the left-margin ⇒ "Show Line Numbers".

49. Changing Font Face and Size: Tools ⇒ Options ⇒ Fonts & Colors ⇒ In "Category", select "Default"

⇒ In "Font", choose the font face and size.

50. Resetting Window View: If you mess up the window view (e.g., you accidentally close a window and

cannot find it anymore), you can reset the view via "Window" menu ⇒ "Reset Windows".

51. Code Templates: For example, when you create a new Java class, NetBeans retrieves the initial

contents from the "Java Class" code template. To configure code templates, select "Tools" menu ⇒

"Templates" ⇒ Choose the desired template ⇒ "Open in Editor". To set a value of a variable used in the all

the code templates (e.g., $User), select "Tools" menu ⇒ "Templates" ⇒ "Settings".

52. Displaying Chinese Character: Need to choose a font that support chinese character display, such

as "Monospace", in Tools ⇒ Options ⇒ Fonts & Colors ⇒ Syntax ⇒ default.

53. Changing the JDK Location: The Netbeans configuration file is located at

"etc\netbeans.conf". Edit the directive "netbeans_jdkhome".

54. Let me know if you have more tips to be included here.

5.2 Java Application Development

13. Choosing the JDK version for your program: Right-click on your project ⇒ "Properties" ⇒

"Source" node ⇒ You can select the JDK level of your project in pull-donw menu "Source/Binary Format".

14. Enabling JDK 7 support: If JDK 7 is already installed in your system, right-click on your Project ⇒

"Properties" ⇒ "Source" node ⇒ "Source/Binary Format" ⇒ Select "JDK 7". Also check "Libraries" ⇒ Java

Platform ⇒ JDK 7.

If JDK 7 is not installed/configured, install JDK 7. Add JDK 7 support to NetBeans via "Tool" menu ⇒ "Java

Platforms" ⇒ "Add Platform...".

15. Choosing Default Charset: Right-click on your project ⇒ "Properties" ⇒ "Source" node ⇒

"Encoding" ⇒ choose your desired charset for the text-file I/O from the pull-down menu.

16. Enabling Unicode Support for File Encoding: Right-click on your project ⇒ "Properties" ⇒

"Source" node ⇒ "Encoding" ⇒ choose your Unicode encoding (e.g., UTF-8, UTF-16, UTF-16LE, UTF-16GE)

for the text-file I/O.

17. To include Javadoc/Source: Use "Library Manager" (select the "Tools" menu ⇒ "Libraries"); or "Java

Platform Manager" (select "Tools" menu ⇒ "Java Platforms")

18. Adding External JAR files & Native Libraries (".dll", ".lib", ".a", ".so"): Many

external Java packages (such as JOGL, Java3D, JAMA, etc) are available to extend the functions of JDK.

These packages typically provide a "lib" directory containing JAR files (".jar") (Java Archive - a single-

file package of Java classes) and native libraries (".dll", ".lib" for windows, ".a", ".so" for Linux and

Mac).

To include an external JAR file (".jar") into a project: Expand the project node ⇒ Right-click on

"Libraries" ⇒ "Add JAR/Folder..." ⇒ Select the desired JAR file or the folder containing the classes.

If the external package contains many JAR files, you could create a user library to contain all the JAR files,

and add the library to all the projects that required these JAR files. From "Tools" menu ⇒ "Libraries" ⇒

"New Library..." ⇒ Enter a library name ⇒ Use "Add JAR/Folder..." to add JAR files into this library.

Many JAR files come with native libraries in the form of ".dll", ".lib" (for Windows) and ".a", ".so" for

Linux/Mac. The directory path of these libraries must be included in JRE's property

241

"java.library.path". This can be done via right-click the project ⇒ Set Configuration ⇒ Customize...

⇒ Run ⇒ In "VM options", enter "-Djava.library.path=xxx", where xxx is path of the native

libraries.

Notes: The JAR files must be included in the CLASSPATH. The native library directories must be included

in JRE's property "java.library.path", which normally but not necessarily includes all the paths from

the PATH environment variable. Read "External JAR files and Native Libraries".

6. Writing Java GUI (AWT/Swing) Application in NetBeans

Step 0: Read

5. Java GUI Application Learning Trail @ http://www.netbeans.org/kb/trails/matisse.html.

6. Swing Tutorial's "Learning Swing with the NetBeans IDE"

@ http://docs.oracle.com/javase/tutorial/uiswing/learn/index.html.

Step 1: Create a New "Java Application" Project

7. Launch NetBeans ⇒ File ⇒ New Project...

8. Under "Categories", choose "Java" ⇒ Under "Projects", choose "Java Application" ⇒ Next.

9. In "Project Name", enter "FirstNetBeansGUI" ⇒ Choose a suitable directory for your "Project

Location" ⇒ Uncheck the "Create Main class" box ⇒ Finish.

Step 2: Write a Java File "JFrame Form"

19. Right-click on the project "FirstNetBeansGUI" ⇒ "New" ⇒ "JFrame Form..." (or "Others" ⇒ "Swing GUI

Forms" ⇒ "JFrame Form").

20. In "Class Name", enter "NetBeansSwingCounter" ⇒ Finish.

21. Create the GUI Components visually:

a. From the "Platte" panel ⇒ "Swing Controls" ⇒ Drag and drop a "Label", "TextField", and

"Button" into the design panel.

b. Click on the "jLabel1" ⇒ In the "Properties" panel, enter "Count" in "text" (You can also single-

click on the jLabel1 to change the text). Right-click on the jLable1 ⇒ Change Variable Name

⇒ In "New Name", enter "lblCount".

c. Similarly, for "jTextField1" ⇒ Change the "text" to 0, and change the "Variable Name" to

"tfCount" ⇒ Resize the text field if necessary.

d. For "jButton1" ⇒ Change the "text" to "Count", and change the "Variable Name" to

"btnCount".

22. Write the event handler for the button by double-clicking the button and enter the following codes:

23. private void btnCountActionPerformed(java.awt.event.ActionEvent evt) {

24. count++;

25. tfCount.setText(count + "");

}

26. Create an instance variable count (just below the class declaration) as follows:

27. public class Counter extends javax.swing.JFrame {

 int count = 0;

Step 3: Compile & Execute

Right-click the source and select "Run File".

Step 4: Study the Generated Source Code

Expand the "Generated Code" and study how the GUI builder declare, allocate and initialize the GUI Components

in the initComponents(). Note how the JButton registers an ActionEvent listener and how an inner class

is used as the listener and provide the event handler actionPerformed(). Also notice that

the main() method uses a Swing's worker to run the GUI on the Event-Dispatcher thread, instead of

the main thread, for thread-safe operations.

public class NetBeansSwingCounter extends javax.swing.JFrame {
 int count = 0;

https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_HowTo.html#external_jar
http://www.netbeans.org/kb/trails/matisse.html
http://docs.oracle.com/javase/tutorial/uiswing/learn/index.html

242

 // Constructor to setup the UI via initComponents()
 public NetBeansSwingCounter() {
 initComponents();
 }

 private void initComponents() {
 lblCount = new javax.swing.JLabel();
 tfCount = new javax.swing.JTextField();
 btnCount = new javax.swing.JButton();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 lblCount.setText("Counter");
 tfCount.setText("0");

 btnCount.setText("Count");
 // Create an anonymous inner as the listener for the ActionEvent fired by btnCount
 btnCount.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 btnCountActionPerformed(evt);
 }
 });

 // Laying out the components
 //

 pack();
 }

 // ActionEvent handler for btnCount
 private void btnCountActionPerformed(java.awt.event.ActionEvent evt) {
 count++;
 tfCount.setText(count + "");
 }

 public static void main(String args[]) {
 // Setup the Look and Feel
 //

 // Run the constructor on the Event-Dispatcher Thread for thread-safe
 java.awt.EventQueue.invokeLater(new Runnable() {
 public void run() {
 new NetBeansSwingCounter().setVisible(true);
 }
 });
 }

 // private variables
 private javax.swing.JButton btnCount;
 private javax.swing.JLabel lblCount;
 private javax.swing.JTextField tfCount;
}

7. NetBeans and MySQL

Reference : "Connecting to a MySQL Database" @ http://netbeans.org/kb/docs/ide/mysql.html.

NetBeans (JavaEE) provides direct support to MySQL server. You can use NetBeans as a GUI client to access a

MySQL server, as well as an administrative tool (e.g., starting and stopping the server).

Configuring NetBeans to Support MySQL

From NetBeans "Window" menu ⇒ Select "Services". The "Services" tab shall appear on the left pane

9. Right-click on the "Databases" node ⇒ "Register MySQL Server". (If you have already registered a MySQL

server, you can right-click on Server node "MySQL Server at hostname:port" ⇒ Properties, to

modify its properties.)

10. Select the "Basic Properties" tab, enter the hostname, port number, root user and password.

11. Select the "Admin Properties" tab:

a. Leave the "Path/URL to admin tool" empty.

http://netbeans.org/kb/docs/ide/mysql.html

243

b. In "Path to start command", enter "<MYSQL_HOME>\bin\mysqld.exe"; in the "Arguments",

enter "--console"

c. In "Path to stop command", enter "<MYSQL_HOME>\bin\mysqladmin.exe", in the

"Arguments", enter "-u root -ppassword shutdown".

12. A server node "MySQL Server at hostname:port" appears.

Database Administration - Start/Stop the Server and Create Databases

5. You can start the MySQL server by right-clicking on the server node ⇒ select "start". [There seems to be a

problem here. If a "connection refused: connect" error occurs, enter the password again.]

6. Once the MySQL server is started and connected, you can see the list of databases by expanding the

MySQL server node. You can create a new database by right-clicking on it and choose "Create

Database...".

Create a new Connection

You need a connection to manipulate data. You can create multiple connections with different users and default

databases.

5. Right-click on the "Databases" ⇒ "New Connection..." ⇒ Select the driver "MySQL Connector/J" ⇒ Next ⇒

Enter hostname, port number, default database, a general username and password ⇒ "Test Connection"

(make sure that MySQL is started) ⇒ Finish.

6. A connection node "jdbc:mysql://hostname:port/defaultDatabase" appears.

Manipulating Data via a Connection

11. Right-click on a connection node (e.g., "jdbc:mysql://hostname:port/defaultDatabase") ⇒

Choose "Connect" (if not connected, provided that the MySQL server has been started).

12. You can expand the connection node to view all the databases.

13. Expand an existing database. There are three sub-nodes "Tables", "View" and "Procedures". Right-click on

the "Tables" to create table or execute command. Similarly, right-click on the "View" and "Procedures".

14. To view/manipulate the records in a table, right-click on the selected table ⇒ You can choose to "View

Data...", "Execute Command...", etc.

15. You can right-click on the connection to "connect" or "disconnect" from the server.

Create a SQL Script and Run the Script

You can create a SQL script by right-clicking on a project ⇒ New ⇒ "SQL File". You can run the script by right-

clicking on the SQL script ⇒ "Run File" ⇒ Select an existing connection (or create a new connection) to run the

script. You could also run a single statement (right-click on the statement ⇒ Run Statement) or a selected group

of statements (highlight the statements ⇒ Right-click ⇒ Run Selection).

8. Developing and Deploying Web Application in NetBeans

Read:

 "Introduction to Developing Web Applications" @ http://netbeans.org/kb/docs/web/quickstart-

webapps.html.

 More articles in "Java EE & Java Web Learning Trail" @ http://netbeans.org/kb/trails/java-ee.html.

8.1 Web (HTTP) Servers

Configuring Web Server

You could configure the web server via "Tools" menu ⇒ "Servers".

Tomcat Server

To configure Tomcat Server, select "Tools" menu ⇒ "Servers" ⇒ click "Add Servers":

11. Choose Server: Select the desired Tomcat version ⇒ Next.

12. Installation and Login Details: In "Server Location", fill in the Tomcat installation directory

($CATALINA_HOME) ⇒ Enter the username/password of a tomcat user with "manager" role. You could

either check the "create user if it does not exist" or define the tomcat user in

"$CATALINA_HOME\conf\tomcat-users.xml" as follows:

http://netbeans.org/kb/docs/web/quickstart-webapps.html
http://netbeans.org/kb/docs/web/quickstart-webapps.html
http://netbeans.org/kb/trails/java-ee.html

244

13. <tomcat-users>

14. <role rolename="manager"/>

15. <user username="tomcatmanager" password="xxxx" roles="manager,manager-script,admin" />

</tomcat-users>

Running the Web Server

Choose "Services" ⇒ Expand "Servers" node ⇒ Right-click on the desired server ⇒ Start/Stop/Restart.

8.2 MySQL Database Server

You can also manage the MySQL database server directly from Tomcat. Read "NetBeans and MySQL" Section.

8.3 Writing a Hello-World Servlet/JSP Web Application

Create a New Servlet/JSP Project

11. From "File" menu ⇒ choose "New Project...".

12. "Choose Project" ⇒ Under "Categories", choose "Java Web" ⇒ Under "Projects", choose "Web

Application" ⇒ "Next".

13. "Name and Location" ⇒ In "Project Name", enter "HelloServletJSP" ⇒ In "Project Location", select a

suitable directory to save your works ⇒ Check "Set as Main Project" ⇒ Next.

14. "Server and settings" ⇒ Choose your server, or "add" a new server ⇒ Next.

15. "Frameworks" ⇒ Select none for pure servlet/JSP application ⇒ Finish.

Writing a Hello-World JSP

A JSP page called "index.jsp" is automatically created, which says "Hello world!". To execute this JSP, right-

click on the project ⇒ "Run". The URL is http://localhost:8080/HelloServletJSP/index.jsp.

Writing a Hello-World Servlet

69. Right-click on the project "HelloServletJSP" ⇒ New ⇒ Servlet.

70. "Name and Location" ⇒ In "Class Name", enter "HelloServlet" ⇒ In "Package", enter "hello" ⇒ Next.

71. "Configure Servlet Deployment" ⇒ In "Servlet Name", enter "HelloServletExample" ⇒ In "URL

Pattern", enter "sayhello" ⇒ Finish.

72. Enter the following codes for "HelloServlet.java":

73. package hello;

74.

75. import java.io.IOException;

76. import java.io.PrintWriter;

77. import javax.servlet.ServletException;

78. import javax.servlet.http.HttpServlet;

79. import javax.servlet.http.HttpServletRequest;

80. import javax.servlet.http.HttpServletResponse;

81.

82. public class HelloServlet extends HttpServlet {
83.
84. @Override
85. public void doGet(HttpServletRequest request, HttpServletResponse response)
86. throws IOException, ServletException {
87. // Set the response message's MIME type (in Content-Type response header)
88. response.setContentType("text/html;charset=UTF-8");
89. // Get an output Writer to write the response message over the network
90. PrintWriter out = response.getWriter();
91. // Write the response message (in an HTML page) to display "Hello, world!"
92. try {
93. out.println("<!DOCTYPE html>");
94. out.println("<html>");
95. out.println("<head><title>Hello Servlet</title></head>");
96. out.println("<body><h1>Hello, World (from Java Servlet)!</h1></body>");
97. out.println("</html>");
98. } finally {

https://www3.ntu.edu.sg/home/ehchua/programming/howto/netbeans_howto.html#NetBeansMySQL

245

99. out.close(); // Always close the output writer
100. }
101. }

}

102. To execute the servlet: Right-click on the project ⇒ run ⇒ Change the URL

to http://localhost:8080/HelloServletJSP/sayhello.

Generating a WAR-file for a Web Application

A WAR (Web Archive) file is basically a zip file for distributing web application in single file. You can use WinZip or

WinRAR to inspect or unzip the war file.

To distribute the project as a war-file, right-click project ⇒ "Clean and Build". The war file is created in the "dist"

directory. You can deploy the web application by dropping the war-file into Tomcat's "webapps" directory.

Tomcat will automatically unzip the war-file and deploy the application upon startup.

Debugging Web Application

The most important reason for using IDE is to use the graphic debugger for debugging the program. You can set

a breakpoint in your server-side Java codes, and "Debug" a web application, similar to a standalone application.

8.4 Writing a Hello-world JSF 2.0 Web Application

Create a New JSF 2.0 Project

33. From "File" menu ⇒ choose "New Project...".

34. "Choose Project" ⇒ Under "Categories", choose "Java Web" ⇒ Under "Projects", choose "Web

Application" ⇒ "Next".

35. "Name and Location" ⇒ In "Project Name", enter "HelloJSF20" ⇒ In "Project Location", select a suitable

directory to save your works ⇒ Check "Set as Main Project" ⇒ Next.

36. "Server and settings" ⇒ Choose your server, or "add" a new server ⇒ Next.

37. "Frameworks" ⇒ Check "JavaServer Faces" ⇒ In "Libraries", "Registered Libraries", select "JSF 2.0" ⇒ Finish.

38. An "index.xhtml" JSF page is generated, as follows:

39. <?xml version='1.0' encoding='UTF-8' ?>

40. <!DOCTYPE html>

41. <html xmlns="http://www.w3.org/1999/xhtml"

42. xmlns:h="http://java.sun.com/jsf/html">

43. <h:head>

44. <title>Facelet Title</title>

45. </h:head>

46. <h:body>

47. Hello from Facelets

48. </h:body>

</html>

To run this facelet, right-click on the project ⇒ Run.

Create a new JSF 2.0 Facelet

31. Right-click on the project ⇒ New ⇒ "Other..."

32. "Choose File Type" ⇒ Under "Category", select "JavaServer Faces" ⇒ Under "File Type", select "JSF Page"

⇒ Next.

33. "Name and Location" ⇒ In "File Name", enter "HelloJSF20" ⇒ In "Options", check "Facelets" ⇒ Finish.

34. In "HelloJSF20.xhtml", enter the following codes:

35. <?xml version='1.0' encoding='UTF-8' ?>

36. <!DOCTYPE html>

246

37. <html xmlns="http://www.w3.org/1999/xhtml"

38. xmlns:h="http://java.sun.com/jsf/html">

39. <h:head>

40. <title>Hello JSF 2.0</title>

41. </h:head>

42. <h:body>

43. <h1>Hello from Facelets</h1>

44. </h:body>

</html>

45. To execute the JSF page, right-click on the project ⇒ Run ⇒ Change the URL

to http://localhost:8080/HelloJSF20/HelloJSF20.xhtml .

8.5 Writing a Hello-world JSF 1.2 Web Application

Create a New JSF 1.2 Project

47. From "File" menu ⇒ choose "New Project...".

48. "Choose Project" ⇒ In "Categories", choose "Java Web" ⇒ In "Projects", choose "Web Application" ⇒

"Next".

49. "Name and Location" ⇒ In "Project Name", enter "HelloJSF12" ⇒ In "Project Location", select a suitable

directory to save your works ⇒ Check "Set as Main Project" ⇒ Next.

50. "Server and settings" ⇒ choose your server, or "add" a new server ⇒ Next.

51. "Frameworks" ⇒ Check "JavaServer Faces" ⇒ In "Libraries", "Registered Libraries", select "JSF 1.2" ⇒ Finish.

52. A "WelcomeJSF.jsp" page is generated, as follows:

53. <%@page contentType="text/html" pageEncoding="UTF-8"%>

54. <%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>

55. <%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>

56. <!DOCTYPE html>

57. <%--
58. This file is an entry point for JavaServer Faces application.
59. --%>
60. <f:view>
61. <html>
62. <head>
63. <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
64. <title>JSP Page</title>
65. </head>
66. <body>
67. <h1><h:outputText value="JavaServer Faces"/></h1>
68. </body>
69. </html>

</f:view>

To run this page, right-click on the project ⇒ Run.

Create a new JSF 1.2 Page

41. Right-click on the project ⇒ New ⇒ "Other..."

42. "Choose File Type" ⇒ In "Category", select "JavaServer Faces" ⇒ In "File Type", select "JSF Page" ⇒ Next.

43. "Name and Location" ⇒ In "File Name", enter "HelloJSF12" ⇒ In "Options", check "JSP File (Standard

Syntax)" ⇒ Finish.

44. In "HelloJSF12.jsp", enter the following codes:

45. <%@page contentType="text/html" pageEncoding="UTF-8"%>

46. <%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>

47. <%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>

247

48. <!DOCTYPE html>

49.

50. <f:view>

51. <html>

52. <head>

53. <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

54. <title>Hello JSF 1.2</title>

55. </head>

56. <body>

57. <h1><h:outputText value="Hello World!"/></h1>

58. </body>

59. </html>

</f:view>

60. To execute the JSF page, right-click on the project ⇒ Run ⇒ Change the URL

to http://localhost:8080/HelloJSF12/faces/HelloJSF12.jsp .

8.6 Debugging Web Applications in NetBeans

You can debug a webapp just like standalone application. For example, you can set breakpoints, single-step

through the programs, etc.

Unit : 3 servlet

Servlet technology is used to create a web application (resides at server side and
generates a dynamic web page).

Servlet technology is robust and scalable because of java language. Before Servlet, CGI

(Common Gateway Interface) scripting language was common as a server-side

programming language. However, there were many disadvantages to this technology.

We have discussed these disadvantages below.

There are many interfaces and classes in the Servlet API such as Servlet, GenericServlet,
HttpServlet, ServletRequest, ServletResponse, etc.

What is a Servlet?

Servlet can be described in many ways, depending on the context.

o Servlet is a technology which is used to create a web application.

o Servlet is an API that provides many interfaces and classes including

documentation.

o Servlet is an interface that must be implemented for creating any Servlet.

o Servlet is a class that extends the capabilities of the servers and responds to the

incoming requests. It can respond to any requests.

o Servlet is a web component that is deployed on the server to create a dynamic

web page.

248

A servlet life cycle can be defined as the entire process from its creation till the
destruction. The following are the paths followed by a servlet.

 The servlet is initialized by calling the init() method.

 The servlet calls service() method to process a client's request.

 The servlet is terminated by calling the destroy() method.

 Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in detail.

The init() Method

The init method is called only once. It is called only when the servlet is created, and
not called for any user requests afterwards. So, it is used for one-time initializations,
just as with the init method of applets.

The servlet is normally created when a user first invokes a URL corresponding to
the servlet, but you can also specify that the servlet be loaded when the server is
first started.

When a user invokes a servlet, a single instance of each servlet gets created, with
each user request resulting in a new thread that is handed off to doGet or doPost as
appropriate. The init() method simply creates or loads some data that will be used
throughout the life of the servlet.

The init method definition looks like this −

public void init() throws ServletException {

 // Initialization code...

}

The service() Method

249

The service() method is the main method to perform the actual task. The servlet
container (i.e. web server) calls the service() method to handle requests coming
from the client(browsers) and to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new
thread and calls service. The service() method checks the HTTP request type (GET,
POST, PUT, DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc. methods
as appropriate.

Here is the signature of this method −

public void service(ServletRequest request, ServletResponse

response)

 throws ServletException, IOException {

}

The service () method is called by the container and service method invokes doGet,
doPost, doPut, doDelete, etc. methods as appropriate. So you have nothing to do
with service() method but you override either doGet() or doPost() depending on
what type of request you receive from the client.

The doGet() and doPost() are most frequently used methods with in each service
request. Here is the signature of these two methods.

The doGet() Method

A GET request results from a normal request for a URL or from an HTML form that
has no METHOD specified and it should be handled by doGet() method.

public void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 // Servlet code

}

The doPost() Method

A POST request results from an HTML form that specifically lists POST as the
METHOD and it should be handled by doPost() method.

public void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

The destroy() Method

The destroy() method is called only once at the end of the life cycle of a servlet.
This method gives your servlet a chance to close database connections, halt
background threads, write cookie lists or hit counts to disk, and perform other such
cleanup activities.

250

After the destroy() method is called, the servlet object is marked for garbage
collection. The destroy method definition looks like this −

public void destroy() {

 // Finalization code...

}

Architecture Diagram

The following figure depicts a typical servlet life-cycle scenario.

 First the HTTP requests coming to the server are delegated to the servlet container.

 The servlet container loads the servlet before invoking the service() method.

 Then the servlet container handles multiple requests by spawning multiple threads, each
thread executing the service() method of a single instance of the servlet.

 Six Steps to Running Your First Servlet

Once Tomcat is installed and configured, you can put it to work. Six steps take you from writing your servlet

to running it. These steps are as follows:

7. Create a directory structure under Tomcat for your application.

8. Write the servlet source code. You need to import the javax.servlet package and the javax.servlet.http

package in your source file.

9. Compile your source code.

251

10. Create a deployment descriptor.

11. Run Tomcat.

12. Call your servlet from a web browser.

Step 1: Create a Directory Structure under Tomcat

When you install Tomcat, several subdirectories are automatically created under the Tomcat home

directory (%TOMCAT_HOME%). One of the subdirectories is webapps. The webapps directory is where

you store your web applications. A web application is a collection of servlets and other contents installed

under a specific subset of the server's URL namespace. A separate directory is dedicated for each servlet

application. Therefore, the first thing to do when you build a servlet application is create an application

directory. This section explains how to create a directory structure for an application called myApp.

3. Create a directory called myApp under the webapps directory. The directory name is important

because this also appears in the URL to your servlet.

4. Create the src and WEB-INF directories under myApp, and create a directory named classes under

WEB-INF. The directory structure is shown in Figure 1.4. The src directory is for your source files,

and the classes directory under WEB-INF is for your Java classes. If you have html files, you put

them directly in the myApp directory. You also may want to create a directory called images under

myApp for all your image files.

Note that the admin, ROOT, and examples directories are for applications created automatically when you

install Tomcat.

Figure 1.4 Tomcat application directory structure.

Step 2: Write the Servlet Source Code

In this step, you prepare your source code. You can write the source code yourself using your

favorite text editor or copy it from the CD included with the book.

The code in Listing 1.1 shows a simple servlet called TestingServlet. The file, named TestingServlet.java,

sends to the browser a few HTML tags and some text. For now, don't worry if you haven't got a clue about

how it works.

Listing 1—TestingServlet.java

import javax.servlet.*;

import javax.servlet.http.*;

javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig04.gif')
javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig04.gif')
javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig04.gif')

252

import java.io.*;

import java.util.*;

public class TestingServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 PrintWriter out = response.getWriter();

 out.println("<HTML>");

 out.println("<HEAD>");

 out.println("<TITLE>Servlet Testing</TITLE>");

 out.println("</HEAD>");

 out.println("<BODY>");

 out.println("Welcome to the Servlet Testing Center");

 out.println("</BODY>");

 out.println("</HTML>");

 }

}

253

Now, save your TestingServlet.java file to the src subdirectory under myApp. You actually can place the

source files anywhere; however, it is always a good idea to be organized by storing all your source code

files in the src directory.

Step 3: Compile Your Source Code

For your servlet source code to compile, you need to include in your CLASSPATH environment variable the

path to the servlet.jar file. The servlet.jar is located in the common\lib\ subdirectory under

%CATALINA_HOME%.

NOTE

If you have forgotten how to edit the CLASSPATH environment variable, refer to Appendix A, "Tomcat

Installation and Configuration."

If you are using Windows, remember that the new environment variable takes effect only for new console

windows. In other words, after changing a new environment variable, open a new console window for

typing your command lines.

Now, change directory to your working directory and type the following if you are using Windows:

javac -d ..\WEB-INF\classes\ TestingServlet.java

If you are using Linux/UNIX, the command is very similar, except that / is used to separate a directory from

a subdirectory.

javac -d ../WEB-INF/classes/ TestingServlet.java

The -d option specifies where to place the generated class files. The command also assumes that you

have placed the JDK's bin directory in the path so you can call any program in it from any directory.

Step 4: Create the Deployment Descriptor

A deployment descriptor is an optional component in a servlet application, taking the form of an XML

document called web.xml. The descriptor must be located in the WEB-INF directory of the servlet

application. When present, the deployment descriptor contains configuration settings specific to that

application. Deployment descriptors are discussed in detail in Chapter 16. "Application Deployment."

254

For this step, you now need to create a web.xml file and place it under the WEB-INF directory under

myApp.

The web.xml for this example application must have the following content.<?xml version="1.0"

encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>

 <servlet-name>Testing</servlet-name>

 <servlet-class>TestingServlet</servlet-class>

 </servlet>

</web-app>

The web.xml file has one element: web-app. You should write all your servlets under <web-app>. For each

servlet, you have a <servlet> element and you need the <servlet-name> and <servlet-class> elements. The

<servlet-name> is the name for your servlet, by which it is known to Tomcat. The <servlet-class> is the

compiled file of your servlet without the .class extension.

Having more than one servlet in an application is common. For every servlet, you need a <servlet> element

in the web.xml file. For example, the following code shows how the web.xml looks if you add another

servlet called Login.

<?xml version="1.0" encoding="ISO-8859-1"?>

255

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>

 <servlet-name>Testing</servlet-name>

 <servlet-class>TestingServlet</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>Login</servlet-name>

 <servlet-class>LoginServlet</servlet-class>

 </servlet>

</web-app>

Step 5: Run Tomcat

If it is not already running, you need to start Tomcat. For information on how to do that, see Appendix A,

"Tomcat Installation and Configuration."

Step 6: Call Your Servlet from a Web Browser

You are ready to call your servlet from a web browser. By default, Tomcat runs on port 8080 in myApp

virtual directory under the servlet subdirectory. The servlet that you just wrote is named Testing. The URL

for that servlet has the following format:

256

http://domain-name/virtual-directory/servlet/servlet-name

If you run the web browser from the same computer as Tomcat, you can replace domain-

name with localhost. Therefore, the URL for your servlet would

be http://localhost:8080/myApp/servlet/Testing.

In the deployment descriptor you wrote in Step 4, you actually mapped the servlet class file called

TestingServlet with the name "Testing" so that your servlet can be called by specifying its class file

(TestingServlet) or its name (Testing). Without a deployment descriptor, your servlet must be called by

specifying its class name; that is, TestingServlet. This means that if you had not written a deployment

descriptor in Step 4, you would have to use the following URL to call your servlet:

http://localhost:8080/myApp/servlet/TestingServlet

Typing the URL in the Address or Location box of your web browser will give you the string "Welcome to

the Servlet Testing Center," as shown in Figure 1.5.

Figure 1.5 The Testing servlet.

Congratulations. You have just written your first servlet.

 yet another insignificant programming notes... | HOME

TABLE OF CONTENTS (HIDE)

1. Introduction

2. Review of HTTP

3. First "Hello-world" Servlet

3.1 Create a new Webapp "helloservlet"

3.2 Write a Hello-world Java Servlet - "HelloServlet.java"

3.3 Configure the Application Deployment Descriptor - "web.xml"

3.4 Run the Hello-world Servlet

4. Processing HTML Form Data

4.1 Write an HTML Form

4.2 Write a Servlet to Process Form Data - "EchoServlet.java"

4.3 Configure the Servlet URL mapping in "web.xml"

4.4 Run the EchoServlet

4.5 Form-Data Submission Methods: GET|POST

5. Request Header and Response Header

5.1 HttpServletRequest

5.2 HttpServletResponse

javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig05.gif')
javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig05.gif')
https://www3.ntu.edu.sg/home/ehchua/programming/index.html
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#show-toc
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-1.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-2.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-3.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-3.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-3.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-3.3
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-3.4
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.3
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.4
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-4.5
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-5.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-5.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-5.2
javascript:popUp('/content/images/art_kurniawan_servlet/elementLinks/01fig05.gif')

257

6. Session Tracking

6.1 HttpSession

6.2 Example

7. ServletConfig and ServletContext

8. Developing and Deploying Web Applications using IDE

9. Tomcat's Servlet Examples

10. Database Servlet

11. Servlet API – A Deeper Look

11.1 Interface Servlet

11.2 A Servlet's Life cycle

11.3 Interface ServletContext

11.4 Dispatch Request - RequestDispatcher

11.5 Filtering

12. Web Application Deployment Descriptor "web.xml"

12.1 A Sample "web.xml"

12.2 Syntax for "web.xml"

12.3 Servlet Deployment Descriptor

12.4 Servlet Initialization Parameters

12.5 Application Initialization Parameters

12.6 Server-wide Initialization Parameters

12.7 Welcome Page

13. Servlet 3.0

13.1 @WebServlet

13.2 @WebInitParam

13.3 @WebFilter

13.4 @WebListener

13.5 @MultipartConfig

Java Server-Side

Programming

Java Servlets
1. Introduction
In the early days, web servers deliver static contents that are indifferent to users' requests. Java

servlets are server-side programs (running inside a web server) that handle clients' requests and

return a customized or dynamic response for each request. The dynamic response could be based

on user's input (e.g., search, online shopping, online transaction) with data retrieved from

databases or other applications, or time-sensitive data (such as news and stock prices).

https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-6.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-6.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-6.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-7.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-8.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-9.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-10.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.3
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.4
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-11.5
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.3
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.4
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.5
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.6
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-12.7
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.1
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.2
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.3
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.4
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html#zz-13.5

258

Java servlets typically run on the HTTP protocol. HTTP is an asymmetrical request-response

protocol. The client sends a request message to the server, and the server returns a response

message as illustrated.

Server-Side Technologies

There are many (competing) server-side technologies available: Java-based (servlet, JSP, JSF,

Struts, Spring, Hibernate), ASP, PHP, CGI Script, and many others.

Java servlet is the foundation of the Java server-side technology, JSP (JavaServer Pages), JSF

(JavaServer Faces), Struts, Spring, Hibernate, and others, are extensions of the servlet technology.

Pre-requisites

HTML, Java Programming Language, HTTP and Apache Tomcat Server, SQL and MySQL Database

System, and many others.

Apache Tomcat Server

Servlets are server-side programs run inside a Java-capable HTTP server. Apache Tomcat Server

(@ http://tomcat.apache.org) is the official Reference Implementation (RI) for Java servlet and

JSP, provided free by open-source foundation Apache (@ http://www.apache.org).

http://tomcat.apache.org/
http://www.apache.org/

259

You need to install Tomcat to try out Java servlets. Read "How to Install Tomcat and Get Started

Java Servlet Programming".

I shall denote Tomcat's installed directory as <CATALINA_HOME>, and assume that Tomcat server is

running in port 8080.

Tomcat provides many excellent servlet examples in

"<CATALINA_HOME>\webapps\examples\servlets". You can run these examples by launching

Tomcat and issuing URL http://localhost:8080/examples.

Java Servlet Versions

Java Servlet has these versions: [TODO features and what is new]

 J2EE 1.2 (December 12, 1999) (Java Servlet 2.2, JSP 1.1, EJB 1.1, JDBC 2.0)

 J2EE 1.3 (September 24, 2001) (Java Servlet 2.3, JSP 1.2, EJB 2.0, JDBC 2.1)

 J2EE 1.4 (November 11, 2003) (Java Servlet 2.4, JSP 2.0, EJB 2.1, JDBC 3.0)

 Java EE 5 (May 11, 2006) (Java Servlet 2.5, JSP 2.1, JSTL 1.2, JSF 1.2, EJB 3.0, JDBC 3.0)

 Java EE 6 (December 10, 2009) (Java Servlet 3.0, JSP 2.2/EL 2.2, JSTL 1.2, JSF 2.0, EJB 3.1,

JDBC 4.0)

 Java EE 7: expected in end of 2012.

The Java Servlets Home Page is

@ http://java.sun.com/products/servlet (http://www.oracle.com/technetwork/java/javaee/servlet/i

ndex.html). For developers, check out the Servlet Developers @ http://java.net/projects/servlet/.

Java Servlet is the foundation technology for Java server-side programming. You need to

understand Servlet thoroughly before you could proceed to other Java server-side technologies

such as JavaServer Pages (JSP) and JavaServer Faces (JSF).

2. Review of HTTP
A HTTP Servlet runs under the HTTP protocol. It is important to understanding the HTTP protocol

in order to understand server-side programs (servlet, JSP, ASP, PHP, etc) running over the HTTP.

Read "HTTP Basics", if needed.

In brief, HTTP is a request-response protocol. The client sends a request message to the server.

The server, in turn, returns a response message. The messages consists of two parts: header

(information about the message) and body (contents). Header provides information about the

messages. The data in header is organized in name-value pairs.

Read "HTTP Request and Response Messages" for the format, syntax of request and response

messages, and examples.

3. First "Hello-world" Servlet

Let us begin by writing a servlet that says hello in response to a client's request. We shall use JDK

and Tomcat to understand the basics, instead of IDE such as Eclipse/NetBeans. Once you

understand the basics, you should use Eclipse/NetBeans to develop your webapp for better

productivity.

3.1 Create a new Webapp "helloservlet"

We shall begin by defining a new webapp (web application) called "helloservlet" in Tomcat. A

webapp, known as a web context in Tomcat, comprises a set of resources, such as HTML files, CSS,

JavaScripts, images, programs and libraries.

https://www3.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_HowTo.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_HowTo.html
http://java.sun.com/products/servlet/
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://java.net/projects/servlet/
https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html
https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html#http_mesages

260

A Java webapp has a standardized directory structure for storing various types of resources.

Create a directory "helloservlet" under Tomcat's "webapps" directory (i.e.,

"<CATALINA_HOME>\webapps\helloservlet", where <CATALINA_HOME> denotes Tomcat's installed

directory). Create sub-directories "WEB-INF" and "META-INF" under "helloservlet". Create sub-

sub-directories "classes", "lib" and "src" under "WEB-INF". Take note that the directory names

are case-sensitive.

The resources must be kept in the respective directories:

 <CATALINA_HOME>\webapps\helloservlet : This directory is known as context

root for the web context "helloservlet". It contains the resources that are accessible by the

clients, such as HTML, CSS, Scripts and images. These resources will be delivered to the

clients as it is. You could create sub-directories such as images, css and scripts, to further

categories the resources.

 <CATALINA_HOME>\webapps\helloservlet\WEB-INF : This directory is NOT

accessible by the clients directly. This is where you keep your application-specific

configuration files (such as "web.xml"), and its sub-directories contain program classes,

source files, and libraries.

o <CATALINA_HOME>\webapps\helloservlet\WEB-INF\src : Keep the Java

program source files. It is a good practice to separate the source files and classes to

facilitate deployment.

o <CATALINA_HOME>\webapps\helloservlet\WEB-INF\classes : Keep

the Java classes (compiled from the source codes). Classes defined in packages must be

kept according to the package directory structure.

261

o <CATALINA_HOME>\webapps\helloservlet\WEB-INF\lib : keep the JAR

files provided by external packages, available to this webapp only.

 <CATALINA_HOME>\webapps\helloservlet\META-INF : This directory is also

NOT accessible by the clients. It keeps resources and configurations (e.g., "context.xml")

related to the particular server (e.g., Tomcat, Glassfish). In contrast, "WEB-INF" is for resources

related to this webapp, independent of the server.

3.2 Write a Hello-world Java Servlet - "HelloServlet.java"

Servlets are Java programs that runs inside a Java-capable HTTP server. A user can invoke a

servlet by issuing a specific URL from the browser (HTTP client). In this example, we shall write a

servlet called "HelloServlet.java" and compiled into "HelloServlet.class". A client can

invoke "HelloServlet.class" by issuing

URL http://hostname:port/helloServlet/sayhello (i.e., "sayhello" relative to the webapp).

A servlet shall be kept inside a Java package (instead of the default no-name package) for proper

deployment. Let's call our package "mypkg". Create a sub-directory called "mypkg" under "WEB-

INF\src". Use a programming text editor to enter the following source codes, and save as

"HelloServlet.java" in "<CATALINA_HOME>\webapps\helloservlet\WEB-INF\src\mypkg".

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

// To save as "<CATALINA_HOME>\webapps\helloservlet\WEB-INF\src\mypkg\HelloServlet.java"

package mypkg;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloServlet extends HttpServlet {

 @Override

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 // Set the response message's MIME type

 response.setContentType("text/html;charset=UTF-8");

 // Allocate a output writer to write the response message into the network socket

 PrintWriter out = response.getWriter();

 // Write the response message, in an HTML page

 try {

 out.println("<!DOCTYPE html>");

 out.println("<html><head>");

 out.println("<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'>");

 out.println("<title>Hello, World</title></head>");

 out.println("<body>");

 out.println("<h1>Hello, world!</h1>"); // says Hello

 // Echo client's request information

 out.println("<p>Request URI: " + request.getRequestURI() + "</p>");

 out.println("<p>Protocol: " + request.getProtocol() + "</p>");

 out.println("<p>PathInfo: " + request.getPathInfo() + "</p>");

 out.println("<p>Remote Address: " + request.getRemoteAddr() + "</p>");

 // Generate a random number upon each request

 out.println("<p>A Random Number: " + Math.random() + "</p>");

 out.println("</body>");

262

33

34

35

36

37

38

 out.println("</html>");

 } finally {

 out.close(); // Always close the output writer

 }

 }

}

Dissecting the Program:

 We define a Java class called HelloServlet (in Line 8). Line 2 places this class in a package

called mypkg. Hence, we save the source file under "mypkg" of the "helloservlet\WEB-

INF\src" directory, following the Java's standard package directory structure.

 We need the Servlet API library to compile this program. Servlet API is not part of JDK or

Java SE (but belongs to Java EE). Tomcat provides a copy of servlet API called "servlet-

api.jar" in "<CATALINA_HOME>\lib". You could copy "servlet-api.jar" from

"<CATALINA_HOME>\lib" to "<JAVA_HOME>\jre\lib\ext" (the JDK Extension Directory), or

include the Servlet JAR file in your CLASSPATH.

 To compile the program under JDK, we need to use the -d option to specify the

output destination directory to place the compiled class in "helloservlet\WEB-

INF\class\mypkg" directory.

 // Change directory to <CATALINA_HOME>\webapps\helloservlet\WEB-INF

 d:\...> cd <CATALINA_HOME>\webapps\helloservlet\WEB-INF

 // Compile the source file and place the class in the specified destination

directory

d:\<CATALINA_HOME>\webapps\helloservlet\WEB-INF> javac -d classes

src\mypkg\HelloServlet.java

The option "-d classes" specifies the output destination directory, relative to the current

directory. The output is <CATALINA_HOME>\webapps\helloservlet\WEB-

INF\classes\mypkg\HelloServlet.class. The compiler creates the package directory

"mypkg" automatically.

 We don't write a servlet from scratch. Instead, we create a servlet by sub-

classing javax.servlet.http.HttpServlet (in Line 8).

 As mentioned, a servlet is invoked in response to a request URL issued by a client.

Specifically, a client issues an HTTP request, the server routes the request message to the

servlet for processing. The servlet returns a response message to the client.

 An HTTP request could use either GET or POST request methods, which will be processed by

the servlet's doGet() or doPost() method, respectively.

 In the HelloServlet, we override the doGet() method (as denoted by the

annotation @Override). The doGet() runs in response to an HTTP GET request issued by a

user via an URL. doGet() takes two arguments, an HttpServletRequest object and

an HttpServletResponse object, corresponding to the request and response messages.

 The HttpServletRequest object can be used to retrieve incoming HTTP request

headers and form data. The HttpServletResponse object can be used to set the

HTTP response headers (e.g., content-type) and the response message body.

 In Line 13, we set the "MIME" type of the response message to "text/html". The client need

to know the message type in order to correctly display the data received. (Other MIME types

include text/plain, image/jpeg, video/mpeg, application/xml, and many others.) In Line

263

15, we retrieve a Writer object called out for writing the response message to the client

over the network. We then use the out.println() to print out a proper HTML page

containing the message "Hello, world!". This servlet also echoes some of the clients's request

information, and prints a random number for each request.

3.3 Configure the Application Deployment Descriptor -

"web.xml"

A web user invokes a servlet, which is kept in the web server, by issuing a specific URL from the

browser. In this example, we shall configure the following request URL to trigger the

"HelloServlet":

http://hostname:port/helloservlet/sayhello

Create a configuration file called "web.xml", and save it under "webapps\helloservlet\WEB-

INF", as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="3.0"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

 <!-- To save as <CATALINA_HOME>\webapps\helloservlet\WEB-INF\web.xml -->

 <servlet>

 <servlet-name>HelloWorldServlet</servlet-name>

 <servlet-class>mypkg.HelloServlet</servlet-class>

 </servlet>

 <!-- Note: All <servlet> elements MUST be grouped together and

 placed IN FRONT of the <servlet-mapping> elements -->

 <servlet-mapping>

 <servlet-name>HelloWorldServlet</servlet-name>

 <url-pattern>/sayhello</url-pattern>

 </servlet-mapping>

</web-app>

 The "web.xml" is called web application deployment descriptor. It provides the configuration

options for that particular web application, such as defining the the mapping between URL

and servlet class.

 The above configuration defines a servlet named "HelloWroldServlet", implemented in

"mypkg.HelloServlet.class" (written earlier), and maps to URL "/sayhello", where "/"

denotes the context root of this webapp "helloservlet". In other words, the absolute URL

264

for this servlet is http://hostname:port/helloservlet/sayhello.

 Take note that EACH servlet requires a pair of <servlet> and <servlet-mapping> elements

to do the mapping, via an arbitrary but unique <servlet-name>. Furthermore, all

the <servlet> elements must be grouped together and placed before the <servlet-

mapping> elements (as specified in the XML schema).

3.4 Run the Hello-world Servlet

To run the servlet, first start the Tomcat server. Verify that the web context "helloservlet" has

been deployed by observing the following messages in the Tomcat's console:

xxx x, xxxx xx:xx:xx xx org.apache.catalina.startup.HostConfig deployDirectory

INFO: Deploying web application directory helloservlet

......

Start a web browser (Firefox, IE or Chrome), and issue the following URL (as configured in the

"web.xml"). Assume that Tomcat is running in port number 8080.

http://localhost:8080/helloservlet/sayhello

We shall see the output "Hello, world!".

265

Try selecting "View Source" in your browser, which produces these output:

<!DOCTYPE html>

<html><head>

<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'>

<title>Hello, World</title></head>

<body>

<h1>Hello, world!</h1>

<p>Request URI: /helloservlet/sayhello</p>

<p>Protocol: HTTP/1.1</p>

<p>PathInfo: null</p>

<p>Remote Address: 127.0.0.1</p>

<p>A Random Number: 0.4320795689818858</p>

</body>

</html>

It is important to take note that users receive the output of the servlet. User does not receive the

servlet's program codes, which are kept under a hidden directory "WEB-INF" and not directly

accessible by web users.

Everything that can possibly go wrong will go wrong... Read "Common Error

Messages". The likely errors are "404 File Not Found" and "500 Internal Server Error".

4. Processing HTML Form Data

4.1 Write an HTML Form

HTML provides a <form>...</form> tag, which can be used to build a user input form containing

elements such as text fields, password field, radio buttons, pull-down menu, checkboxes, text

area, hidden field, submit and reset buttons. This allows web users to interact with the web server

by submit data. For example,

https://www3.ntu.edu.sg/home/ehchua/programming/howto/ErrorMessages.html
https://www3.ntu.edu.sg/home/ehchua/programming/howto/ErrorMessages.html

266

Create the following HTML script, and save as "form_input.html" under the context root

"helloservlet".

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

<!DOCTYPE html>

<html>

<head>

 <meta http-equiv='Content-Type' content='text/html; charset=UTF-8'>

 <title>User Input Form</title>

</head>

<body>

<h2>User Input Form</h2>

<form method="get" action="echo">

 <fieldset>

 <legend>Personal Particular</legend>

 Name: <input type="text" name="username" />

 Password: <input type="password" name="password" />

 Gender: <input type="radio" name="gender" value="m" checked />Male

 <input type="radio" name="gender" value="f" />Female

 Age: <select name = "age">

 <option value="1">< 1 year old</option>

 <option value="99">1 to 99 years old</option>

267

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 <option value="100">> 99 years old</option>

 </select>

 </fieldset>

 <fieldset>

 <legend>Languages</legend>

 <input type="checkbox" name="language" value="java" checked />Java

 <input type="checkbox" name="language" value="c" />C/C++

 <input type="checkbox" name="language" value="cs" />C#

 </fieldset>

 <fieldset>

 <legend>Instruction</legend>

 <textarea rows="5" cols="30" name="instruction">Enter your instruction here...</textarea>

 </fieldset>

 <input type="hidden" name="secret" value="888" />

 <input type="submit" value="SEND" />

 <input type="reset" value="CLEAR" />

</form>

</body>

</html>

Start the tomcat server. Issue the following URL to request for the HTML page:

http://localhost:8080/helloservlet/form_input.html

Explanation

 The <fieldset>...</fieldset> tag groups related elements and displays them in a box.

The <legend>...</legend> tag provides the legend for the box.

 This HTML form (enclosed within <form>...</form>) contains the following types of input

elements:

1. Text field (<input type="text">): for web users to enter text.

2. Radio buttons (<input type="radio">): choose any one (and possibly none).

3. Pull-down menu (<select> and <option>): pull-down menu of options.

4. Checkboxes (<input type="checkbox">): chose none or more.

5. Text area (<textarea>...<textarea>): for web users to enter multi-line text. (Text

field for single line only.)

6. Hidden field (<input type="hidden">): for submitting hidden name=value pair.

7. Submit button (<input type=submit>): user clicks this button to submit the form data

to the server.

8. Reset button (<input type="reset">): resets all the input field to their default value.

Each of the input elements has an attribute "name", and an optional attribute "value". If an

element is selected, its "name=value" pair will be submitted to the server for processing.

 The <form> start-tag also specifies the URL for submission in the action="url" attribute,

and the request method in the method="get|post" attribute.

268

For example, suppose that we enter "Alan Smith" in the text field, select "male", and click the

"SEND" button, we will get a "404 page not found" error (because we have yet to write the

processing script). BUT observe the destination URL:

http://localhost:8080/helloservlet/echo?username=Alan+Smith&gender=m&....

Observe that:

 The URL http://localhost:8080/helloservlet/echo is retrieved from the

attribute action="echo" of the <form> start-tag. Relative URL is used in this example.

The base URL for the current page "form_input.html"

is http://localhost:8080/helloservlet/. Hence, the relative URL "echo" resolves

into http://localhost:8080/helloservlet/echo.

 A '?' follows the URL, which separates the URL and the so-called query string (or query

parameters, request parameters) followed.

 The query string comprises the "name=value" pairs of the selected input elements (i.e.,

"username=Alan+Smith" and "gender=m"). The "name=value" pairs are separated by an '&'.

Also take note that the blank (in "Alan Smith") is replace by a '+'. This is because special

characters are not permitted in the URL and have to be encoded (known as URL-encoding).

Blank is encoded as '+' (or %20). Other characters are encoded as %xx, where xx is the ASCII

code in hex. For example, '&' as %26, '?' as %3F.

 Some input elements such as checkboxes may trigger multiple parameter values, e.g.,

"language=java&language=c&language=cs" if all three boxes are checked.

 HTTP provides two request methods: GET and POST. For GET request, the query parameters

are appended behind the URL. For POST request, the query string are sent in the request

message's body. POST request is often preferred, as users will not see the strange string in

the URL and it can send an unlimited amount of data. The amount of data that can be sent

via the GET request is limited by the length of the URL. The request method is specified in

the <form method="get|post"...> start-tag. In this tutorial, we use the GET request, so that

you can inspect the query string.

4.2 Write a Servlet to Process Form Data - "EchoServlet.java"

The form that we have written send its data to a server-side program having relative URL of

"echo" (as specified in the action="url" attribute of the <form> start-tag). Let us write a servlet

called EchoServlet, which shall be mapped to the URL "echo", to process the incoming form

data. The servlet simply echoes the data back to the client.

Similar to the "HelloServlet", we define the "EchoServlet" under package "mypkg", and save

the source file as "<CATALINA_HOME>\webapps\helloservlet\WEB-

INF\src\mypkg\EchoServlet.java".

1

2

3

4

5

6

7

8

9

10

11

// To save as "<CATALINA_HOME>\webapps\helloservlet\WEB-INF\src\mypkg\EchoServlet.java"

package mypkg;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class EchoServlet extends HttpServlet {

 @Override

269

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 // Set the response message's MIME type

 response.setContentType("text/html; charset=UTF-8");

 // Allocate a output writer to write the response message into the network socket

 PrintWriter out = response.getWriter();

 // Write the response message, in an HTML page

 try {

 out.println("<!DOCTYPE html>");

 out.println("<html><head>");

 out.println("<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'>");

 out.println("<title>Echo Servlet</title></head>");

 out.println("<body><h2>You have enter</h2>");

 // Retrieve the value of the query parameter "username" (from text field)

 String username = request.getParameter("username");

 // Get null if the parameter is missing from query string.

 // Get empty string or string of white spaces if user did not fill in

 if (username == null

 || (username = htmlFilter(username.trim())).length() == 0) {

 out.println("<p>Name: MISSING</p>");

 } else {

 out.println("<p>Name: " + username + "</p>");

 }

 // Retrieve the value of the query parameter "password" (from password field)

 String password = request.getParameter("password");

 if (password == null

 || (password = htmlFilter(password.trim())).length() == 0) {

 out.println("<p>Password: MISSING</p>");

 } else {

 out.println("<p>Password: " + password + "</p>");

 }

 // Retrieve the value of the query parameter "gender" (from radio button)

 String gender = request.getParameter("gender");

 // Get null if the parameter is missing from query string.

 if (gender == null) {

 out.println("<p>Gender: MISSING</p>");

 } else if (gender.equals("m")) {

 out.println("<p>Gender: male</p>");

 } else {

 out.println("<p>Gender: female</p>");

 }

 // Retrieve the value of the query parameter "age" (from pull-down menu)

 String age = request.getParameter("age");

 if (age == null) {

270

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

 out.println("<p>Age: MISSING</p>");

 } else if (age.equals("1")) {

 out.println("<p>Age: < 1 year old</p>");

 } else if (age.equals("99")) {

 out.println("<p>Age: 1 to 99 years old</p>");

 } else {

 out.println("<p>Age: > 99 years old</p>");

 }

 // Retrieve the value of the query parameter "language" (from checkboxes).

 // Multiple entries possible.

 // Use getParameterValues() which returns an array of String.

 String[] languages = request.getParameterValues("language");

 // Get null if the parameter is missing from query string.

 if (languages == null || languages.length == 0) {

 out.println("<p>Languages: NONE</p>");

 } else {

 out.println("<p>Languages: ");

 for (String language : languages) {

 if (language.equals("c")) {

 out.println("C/C++ ");

 } else if (language.equals("cs")) {

 out.println("C# ");

 } else if (language.equals("java")) {

 out.println("Java ");

 }

 }

 out.println("</p>");

 }

 // Retrieve the value of the query parameter "instruction" (from text area)

 String instruction = request.getParameter("instruction");

 // Get null if the parameter is missing from query string.

 if (instruction == null

 || (instruction = htmlFilter(instruction.trim())).length() == 0

 || instruction.equals("Enter your instruction here...")) {

 out.println("<p>Instruction: NONE</p>");

 } else {

 out.println("<p>Instruction: " + instruction + "</p>");

 }

 // Retrieve the value of the query parameter "secret" (from hidden field)

 String secret = request.getParameter("secret");

 out.println("<p>Secret: " + secret + "</p>");

 // Get all the names of request parameters

 Enumeration names = request.getParameterNames();

 out.println("<p>Request Parameter Names are: ");

 if (names.hasMoreElements()) {

271

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

 out.print(htmlFilter(names.nextElement().toString()));

 }

 do {

 out.print(", " + htmlFilter(names.nextElement().toString()));

 } while (names.hasMoreElements());

 out.println(".</p>");

 // Hyperlink "BACK" to input page

 out.println("BACK");

 out.println("</body></html>");

 } finally {

 out.close(); // Always close the output writer

 }

 }

 // Redirect POST request to GET request.

 @Override

 public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 doGet(request, response);

 }

 // Filter the string for special HTML characters to prevent

 // command injection attack

 private static String htmlFilter(String message) {

 if (message == null) return null;

 int len = message.length();

 StringBuffer result = new StringBuffer(len + 20);

 char aChar;

 for (int i = 0; i < len; ++i) {

 aChar = message.charAt(i);

 switch (aChar) {

 case '<': result.append("<"); break;

 case '>': result.append(">"); break;

 case '&': result.append("&"); break;

 case '"': result.append("""); break;

 default: result.append(aChar);

 }

 }

 return (result.toString());

 }

}

Dissecting the Program

 The query string comprises name=value pairs. We can retrieve the query parameters from

the request message (captured in doGet()'s argument HttpServletRequest request) via

one of the following methods:

272

 request.getParameter("paramName")

 // Returns the parameter value in a String.

 // Returns null if parameter name does not exist.

 // Returns the first parameter value for a multi-value parameter.

 request.getParameterValues("paramName")

 // Return all the parameter values in a String[].

 // Return null if the parameter name does not exist.

 request.getParameterNames()

 // Return all the parameter names in a java.util.Enumeration, possibly

empty.

 Take note that the parameter name is case sensitive.

 We use request.getParameter("paramName") to retrieve the parameter value for most of

the single-value input elements (such as text field, radio button, text area, etc). If the

parameter is present (not null), we trim() the returned string to remove the leading and

trailing white spaces.

 We also replace the special HTML characters (>, <, &, ") with the HTML escape sequences in

the input strings, before we echo them back to the client via out.println(). This step is

necessary to prevent the so-called command-injection attack, where user enters a script into

the text field. The replacement is done via a static helper method htmlFilter(). [

Rule of thumb: Any text string taken from the client and echoing back

via out.println() needs to be filtered!

 If the parameter could possess multiple values (e.g., checkboxes), we

use request.getParameterValues(), which returns an array of String or null if the

parameter does not exist.

 One of the nice features of Java servlet is that all the form data decoding (i.e., URL-decoding)

is handled automatically. That is, '+' will be decoded to blank, %xx decoded into the

corresponding character.

4.3 Configure the Servlet URL mapping in "web.xml"

Our <form>'s action attribute refers to relative URL "echo", which has to be mapped to

the EchoServlet.class in the web application deployment descriptor file "WEB-INF\web.xml":

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="3.0"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

 <!-- To save as <CATALINA_HOME>\webapps\helloservlet\WEB-INF\web.xml -->

 <servlet>

 <servlet-name>HelloWorldServlet</servlet-name>

 <servlet-class>mypkg.HelloServlet</servlet-class>

 </servlet>

273

 <servlet>

 <servlet-name>EchoServletExample</servlet-name>

 <servlet-class>mypkg.EchoServlet</servlet-class>

 </servlet>

 <!-- Note: All <servlet> elements MUST be grouped together and

 placed IN FRONT of the <servlet-mapping> elements -->

 <servlet-mapping>

 <servlet-name>HelloWorldServlet</servlet-name>

 <url-pattern>/sayhello</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>EchoServletExample</servlet-name>

 <url-pattern>/echo</url-pattern>

 </servlet-mapping>

</web-app>

4.4 Run the EchoServlet

Start the Tomcat server. Issue URL http://localhost:8080/helloservlet/form_input.html.

Fill up the form, click the submit button to trigger the servlet. Alternatively, you could issue a URL

with query string.

4.5 Form-Data Submission Methods: GET|POST

Two request methods, GET and POST, are available for submitting form data, to be specified in

the <form>'s attribute "method=GET|POST". GET and POST performs the same basic function. That

is, gather the name-value pairs of the selected input elements, URL-encode, and pack them into a

query string. However, in a GET request, the query string is appended behind the URL, separated

by a '?'. Whereas in a POST request, the query string is kept in the request body (and not shown

in the URL). The length of query string in a GET request is limited by the maximum length of URL

permitted, whereas it is unlimited in a POST request. I recommend POST request for production,

as it does not show the strange looking query string in the URL, even if the amount of data is

limited. In this tutorial, I use GET method, so that you can inspect the query string on the URL.

To try out the POST request, modify the "form_input.html":

<form method="post" action="echo">

</form>

Inside the servlet, GET request is processed by the method doGet(), while POST request is

processed by the method doPost(). Since they often perform identical operations, we re-

direct doPost() to doGet() (or vice versa), as follows:

public class MyServlet extends HttpServlet {

 // doGet() handles GET request

 @Override

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

274

 }

 // doPost() handles POST request

 @Override

 public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 doGet(request, response); // call doGet()

 }

}

5. Request Header and Response Header
HTTP is a request-response protocol. The client sends a request message to the server. The

server, in turn, returns a response message. The request and response messages consists of two

parts: header (information about the message) and body (contents). Header provides information

about the messages. The data in header is organized in name-value pairs. Read "HTTP Request

and Response Messages" for the format, syntax of request and response messages.

5.1 HttpServletRequest

The request message is encapsulated in an HttpServletRequest object, which is passed into

the doGet() methods. HttpServletRequest provides many methods for you to retrieve the

headers:

 General methods: getHeader(name), getHeaders(name), getHeaderNames().

 Specific methods: getContentLength(), getContentType(), getCookies(), getAuthType(),

etc.

 URL related: getRequestURI(), getQueryString(), getProtocol(), getMethod().

Example: Read "Request Header Example".

5.2 HttpServletResponse

The response message is encapsulated in the HttpServletResponse, which is passed

into doGet() by reference for receiving the servlet output.

 setStatusCode(int statuscode), sendError(int code, String

message), sendRedirect(url).

 response.setHeader(String headerName, String headerValue).

 setContentType(String mimeType), setContentLength(int length), etc.

Example: [TODO]

6. Session Tracking
HTTP is a stateless protocol. In other words, the current request does not know what has been

done in the previous requests. This creates a problem for applications that runs over many

requests, such as online shopping (or shopping cart). You need to maintain a so-called session to

pass data among the multiple requests.

You can maintain a session via one of these three approaches:

4. Cookie: A cookie is a small text file that is stored in the client's machine, which will be send

to the server on each request. You can put your session data inside the cookie. The biggest

problem in using cookie is clients may disable the cookie.

5. URL Rewriting: Passes data by appending a short text string at the end of every URL,

e.g., http://host/path/file.html;jsessionid=123456. You need to rewrite all the URLs

(e.g., the "action" attribute of <form>) to include the session data.

https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html#http_mesages
https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html#http_mesages
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletExamples.html#ServletExample_RequestHeader

275

6. Hidden field in an HTML form: pass data by using hidden field tag (<input type="hidden"

name="session" value="...." />). Again, you need to include the hidden field in all the

pages.

For detailed information, read "HTTP state and session management".

6.1 HttpSession

Programming your own session tracking (using the above approaches) is tedious and

cumbersome. Fortunately, Java Servlet API provides a session tracking facility, via an interface

called javax.servlet.http.HttpSession. It allows servlets to:

 View and manipulate information about a session, such as the session identifier, creation

time, and last accessed time.

 Bind objects to sessions, allowing user information to persist across multiple user requests.

The procedure is as follows:

21. Check if a session already exists. If so, use the existing session object; otherwise, create a

new session object. Servlet API automates this step via the getSession() method

of HttpServletRequest:

22. // Retrieve the current session. Create one if not exists

23. HttpSession session = request.getSession(true);

24. HttpSession session = request.getSession(); // same as above

25.

26. // Retrieve the current session.

27. // Do not create new session if not exists but return null

HttpSession session = request.getSession(false);

The first statement returns the existing session if exists, and create a

new HttpSession object otherwise. Each session is identified via a session ID. You can

use session.getID() to retrieve the session ID string.

HttpSession, by default, uses cookie to pass the session ID in all the client's requests

within a session. If cookie is disabled, HttpSession switches to URL-rewriting to append

the session ID behind the URL. To ensure robust session tracking, all the URLs emitted

from the server-side programs should pass thru the method response.encodeURL(url). If

cookie is used for session tracking, encodeURL(url) returns the url unchanged. If URL-

rewriting is used, encodeURL(url) encodes the specified url by including the session ID.

28. The session object maintains data in the form of key-value pairs. You can

use session.getAttribute(key) to retrieve the value of an existing

key, session.setAttribute(key, value) to store new key-value pair,

and session.removeAttribute(key) to remove an existing key-value pair. For example,

29. // Allocate a shopping cart (assume to be a list of String)

30. List<String> shoppingCart = new ArrayList<>();

31. // Populate the shopping cart

32. shoppingCart.add("Item 1");

33.

34. // Retrieve the current session, create one if not exists

35. HttpSession session = request.getSession(true);

36. // Place the shopping cart inside the session

37. synchronized (session) { // synchronized to prevent concurrent updates

https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_StateManagement.html

276

38. session.setAttribute("cart", shoppingCart);

39. }

.....

Any page within the session can retrieve the shopping cart:

// Retrieve the current session, do not create new session

HttpSession session = request.getSession(false);

if (session != null) {

 List<String> theCart = (List<String>)session.getAttribute("cart");

 if (theCart != null) { // cart exists?

 for (String item : theCart) {

 }

 }

}

40. You can use session.invalidate() to terminate and remove a session. You can use

set setMaxInactiveInterval() and getMaxInactiveInterval() to set and get the

inactive interval from the last client request, before the server invalidate the session.

6.2 Example

The following servlet demonstrates the use of session, by counting the number of accesses within

this session from a particular client. We also use getID() to retrieve the session

ID, getCreationTime() and getLastAccessedTime() to get the session creation and last

accessed times.

SessionServlet.java

// To save as "<CATALINA_HOME>\webapps\helloservlet\WEB-

INF\src\mypkg\SessionServlet.java"

package mypkg;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.Date;

public class SessionServlet extends HttpServlet {

 @Override

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 // Set the response message's MIME type

 response.setContentType("text/html;charset=UTF-8");

 // Allocate a output writer to write the response message into the network

socket

 PrintWriter out = response.getWriter();

 // Return the existing session if there is one. Create a new session

otherwise.

 HttpSession session = request.getSession();

 Integer accessCount;

 synchronized(session) {

277

 accessCount = (Integer)session.getAttribute("accessCount");

 if (accessCount == null) {

 accessCount = 0; // autobox int to Integer

 } else {

 accessCount = new Integer(accessCount + 1);

 }

 session.setAttribute("accessCount", accessCount);

 }

 // Write the response message, in an HTML page

 try {

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head><meta http-equiv='Content-Type' content='text/html;

charset=UTF-8'>");

 out.println("<title>Session Test Servlet</title></head><body>");

 out.println("<h2>You have access this site " + accessCount + " times in

this session.</h2>");

 out.println("<p>(Session ID is " + session.getId() + ")</p>");

 out.println("<p>(Session creation time is " +

 new Date(session.getCreationTime()) + ")</p>");

 out.println("<p>(Session last access time is " +

 new Date(session.getLastAccessedTime()) + ")</p>");

 out.println("<p>(Session max inactive interval is " +

 session.getMaxInactiveInterval() + " seconds)</p>");

 out.println("<p><a href='" + request.getRequestURI() +

"'>Refresh");

 out.println("<p><a href='" + response.encodeURL(request.getRequestURI())

+

 "'>Refresh with URL rewriting");

 out.println("</body></html>");

 } finally {

 out.close(); // Always close the output writer

 }

 }

}

web.xml

......

<servlet>

 <servlet-name>SessionTestServlet</servlet-name>

 <servlet-class>mypkg.SessionServlet</servlet-class>

</servlet>

......

......

<servlet-mapping>

 <servlet-name>SessionTestServlet</servlet-name>

 <url-pattern>/sessiontest</url-pattern>

</servlet-mapping>

278

Running the Servlet

You can use URL http://localhost:8080/helloservlet/sessiontest to access this servlet. Try

refreshing the page. Try also closing and restart the browser, and issue the URL.

Under Firefox, a cookie named jsessionid is created for this session. The value of the cookie is

the same as the return value of session.getID(). By default, Servlet API uses a cookie for

managing session, but will automatically switch into URL rewriting if cookie is disabled. To ensure

robust session tracking, all the URLs emitted from the server-side programs should pass thru the

method response.encodeURL(url). If cookie is used for session

tracking, encodeURL(url) returns the url unchanged. If URL-rewriting is

used, encodeURL(url) encodes the specified url by including the session ID. The session data

are kept in the server, only a session ID is passed to the client.

279

Try disabling the cookie, and use (a) the refresh button (F5), (b) refresh and clear cache (Ctrl-F5),

(c) the refresh link, and (d) the refresh with URL re-writing, to refresh the page.

7. ServletConfig and ServletContext
ServletConfig

ServletConfig is a servlet configuration object used by a servlet container (e.g., Tomcat,

GlassFish) to pass information to a servlet during initialization. It is passed as the argument in

the init() method. The init parameters are declared in the application-specific deployment

descriptor "web.xml". You can retrieve the init parameters

via ServletConfig.getInitParam("paramName") method. For example, suppose the

application's "web.xml" declares these initialization parameters about database connection:

<web-app ...>

 ...

 <servlet>

 ...

 <init-param>

 <param-name>databaseURL</param-name>

 <param-value>jdbc:mysql://localhost:3306/ebookshop</param-value>

 </init-param>

 <init-param>

 <param-name>user</param-name>

 <param-value>myuser</param-value>

 </init-param>

 <init-param>

 <param-name>password</param-name>

280

 <param-value>xxxx</param-value>

 </init-param>

 </servlet>

 ...

</web-app>

You can retrieve the init parameters in the servlet's init() method, as follow:

@Override

public void init(ServletConfig config) throws ServletException {

 super.init(config);

 // Read the init params and save them in web context for use by

 // servlets and JSP within this web app.

 ServletContext context = config.getServletContext();

 context.setAttribute("databaseURL", config.getInitParameter("databaseURL"));

 context.setAttribute("user", config.getInitParameter("user"));

 context.setAttribute("password", config.getInitParameter("password"));

}

ServletContext

Each webapp is represented in a single context within the servlet container (such as Tomcat,

Glassfish). In Servlet API, this context is defined in javax.servlet.ServletContext interface (a

better name is probably WebappContext). A webapp may use many servlets. Servlets deployed in

the same webapp can share information between them using the shared ServletContext object.

There is one ServletContext per webapp (or web context). It can be retrieved

via ServletConfig.getServletContext(). A servlet can use it to communicate with its servlet

container (e.g., Tomcat, Glassfish), for example, to get the MIME type of a file, dispatch requests,

or write to a log file. ServletContext has an "application" scope, and can also be used to pass

information between servlets and JSPs within the same application, via

methods setAttribute("name", object) and getAttribute("name").

Example [TODO]

8. Developing and Deploying Web Applications

using IDE

It is a lot more productive and efficient to use an IDE (such as Eclipse or NetBeans) to develop

your web application. You could start/stop your servers from IDE directly. You could debug your

web application in IDE, like debugging standalone application.

NetBeans : Read "Developing and Deploying Web Applications in NetBeans".

Eclipse : Read "Developing and Deploying Web Applications in Eclipse".

9. Tomcat's Servlet Examples
Tomcat provides a number of excellent servlet examples in

"<CATALINA_HOME>\webapps\examples". The servlet source files are kept under

"<CATALINA_HOME>\webapps\examples\WEB-INF\classes", together with the compiled classes.

To run the examples, start Tomcat server and issue URL http://localhost:8080/examples.

I strongly encourage you to study the examples, Read "Tomcat's Java Servlet Examples

Explained".

https://www3.ntu.edu.sg/home/ehchua/programming/howto/NetBeans_HowTo.html#NetBeans_WebApp
https://www3.ntu.edu.sg/home/ehchua/programming/howto/EclipseJava_HowTo.html#EclipseWebapp
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletExamples.html
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletExamples.html

281

10. Database Servlet
Read "Java Servlet Case Study" and "Java Servlet Case Study Continue".

11. Servlet API – A Deeper Look

A servlet is a Java web component, managed by a servlet container (such as Apache Tomcat or

Glassfish), which generates dynamic content in response to client's request. A servlet container

(or servlet engine) is a web server extension which provides servlet functionality. A servlet

container contains and manages servlets throughout their life cycle.

11.1 Interface Servlet

The Servlet interface is the central abstraction of the Java servlet API. HttpServlet - the most

commonly servlet which handles HTTP requests, is a subclass of GenericServlet which

implements Servlet interface.

The Servlet interface declares these abstract methods:

// Servlet's lifecycle

void init(ServletConfig config)

void destroy()

void service(ServletRequest request, ServletResponse response)

// Servlet configuration and information

ServletConfig getServletConfig()

String getServletInfo()

11.2 A Servlet's Life cycle

A servlet's life cycle is managed via the init(), service() and destroy() methods.

Loading and Initialization

Servlet container (e.g., Tomcat or Glassfish) is responsible for loading and instantiating servlets. It

may load and instantiate servlets when it is started, or delay until it determines that the servlet is

needed to service a request (usually at the first request to the servlet).

https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletCaseStudy.html
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletCaseStudyPart2.html

282

The servlet container invokes the init(ServletConfig) method of the servlet, providing

a ServletConfig object as an argument. init() runs only once. It is usually used to read

persistent configuration data and initialize costly resource.

This ServletConfig object allows the servlet to access initialization parameters for this particular

servlet. These parameters are defined in the web application deployment descriptor file (i.e.,

“web.xml”), under the servlet's name, as follows:

<servlet>

 <servlet-name>ServletName</servlet-name>

 <servlet-class>ServletClassFile</servlet-class>

 <init-param>

 <param-name>initParam1</param-name>

 <param-value>initParam1Value</param-value>

 </init-param>

 <init-param>

 <param-name>initParam2</param-name>

 <param-value>initParam2Value</param-value>

 </init-param>

</servlet>

The ServletConfig interface defines these methods to retrieve the initialization parameters for

this servlet.

String getInitParameter(String name)

java.util.Enumeration getInitParameterNames()

For example,

public void init(ServletConfig config) throws ServletException {

 // Read all the init parameters for this servlet

 Enumeration e = config.getInitParameterNames();

 while (e.hasMoreElements()) {

 String initParamName = (String)e.nextElement();

 String initParamValue = config.getInitParameter(initParamName);

 }

}

The ServletConfig interface is implemented by HTTPServlet and GenericServlet. Hence,

the getInitParameter() and getInitParameterNames() method can be called directly

within init() or service().

The ServletConfig also gives servlet access to a ServletContext object that provides

information about this web context (aka web application). ServletContext will be discussed

later.

In Service

Once a servlet is initialized, the servlet container invokes its service() method to handle client

requests. This method is called once for each request. Generally, the servlet container handle

concurrent request to the same servlet by running service() on different threads

(unless SingleThreadModel interface is declared).

For HttpServlet, service() dispatches doGet(), doPost(), doHead(), doOptions(), doTrace(),

etc, to handle HTTP GET, POST, HEAD, OPTIONS, TRACE, etc, request respectively.

283

The service() method of an HttpServlet takes two arguments, an HttpServletRequest object

and an HttpServletResponse object that corresponds to the HTTP request and response

messages respectively.

End of Service

When the servlet container decides that a servlet should be removed from the container (e.g.,

shutting down the container or time-out, which is implementation-dependent), it calls

the destroy() method to release any resource it is using and save any persistent state. Before

the servlet container calls the destroy(), it must allow all service() threads to complete or

time-out.

11.3 Interface ServletContext

The ServletContext interface defines a servlet's view of the webapp (or web context) in which it

is running (a better name is actually ApplicationContext). Via the ServletContext object, a

servlet can communicate with the container, e.g., write to event log, get the URL reference to

resources, and get and set attributes that other servlets in the same context can access.

There is one ServletContext object for each web application deployed into a container. You can

specify initialization parameters for a web context (that are available to all the servlet under the

web context) in the web application deployment descriptor, e.g.,

<web-app>

 <context-param>

 <param-name>jdbcDriver</param-name>

 <param-value>com.mysql.jdbc.Driver</param-value>

 </context-param>

 <context-param>

 <param-name>databaseUrl</param-name>

 <param-value>jdbc:mysql://localhost/eshop</param-value>

 </context-param>

......

</web-app>

Servlets under this web context can access the context's initialization parameters via

the ServletConfig's methods:

// ServletConfig

String getInitParameter(String name)

java.util.Enumeration getInitParameterNames()

A servlet can bind an attribute of name-value pair into the ServletContext, which will then be

available to other servlet in the same web application. The methods available are:

// ServletContext

Object getAttribute(String name)

void setAttribute(String name, Object value)

void removeAttribute(String name)

java.util.Enumeration getAttributeNames()

Other methods in ServletContext are:

// Write message to event log

284

void log(String message)

// Get container info

String getServerInfo()

int getMajorVersion()

int getMinorVersion()

The ServletContext provides direct access to static content of the web application (such as

HTML, GIF files), via the following methods:

java.net.URL getResource(String path)

java.io.InputStream getResourceAsStream(String path)

11.4 Dispatch Request - RequestDispatcher

When building a web application, it is often useful to forward a request to another servlet, or to

include the output of another servlet in the response. The RequestDispatcher interface supports

these. The RequestDispatcher can be obtained via ServletContext:

// ServletContext

RequestDispatcher getRequestDispatcher(String servletPath)

RequestDispatcher getNamedDispatcher(String servletName)

Once the servlet obtained a RequestDispatcher of another servlet within the same web

application, it could include or forward the request to that servlet, e.g.,

RequestDispatcher rd = context.getRequestDispatcher("/test.jsp?isbn=123");

rd.include(request, response);

// or

rd.forward(request, response);

11.5 Filtering

A filter is a reusable piece of code that can transform the content of HTTP requests, responses,

and header information. Examples of filtering components are:

 Authentication filters

 Logging and auditing filters

 Image conversion filters

 Data compression filters

 Encryption filters

 Tokenizing filters

 Filters that trigger resource access events

 XSL/T filters that transform XML content

 MIME-type chain filters

 Caching filters

[TODO] more

12. Web Application Deployment Descriptor

"web.xml"

285

The "web.xml" contains the web application deployment descriptors. Tomcat's has a system-wide

(global) "web.xml" in "<CATALINA_HOME>\conf". Each web application has its own "web.xml" in

"ContextRoot\WEB-INF", which overrides the global settings. Tomcat monitors web.xml for all

web applications and reloads the web application when web.xml changes, if reloadable is set

to true.

12.1 A Sample "web.xml"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="3.0"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

 <!-- General Description of the web application -->

 <display-name>Workshop Continue</display-name>

 <description>We shall continue our e-bookstore...</description>

 <!-- Context initialization parameters -->

 <!-- Provide the database related parameters -->

 <context-param>

 <param-name>jdbcDriver</param-name>

 <param-value>com.mysql.jdbc.Driver</param-value>

 </context-param>

 <context-param>

 <param-name>databaseUrl</param-name>

 <param-value>jdbc:mysql://localhost/eshop</param-value>

 </context-param>

 <!-- Define servlets -->

 <servlet>

 <servlet-name>BookQuery</servlet-name>

 <servlet-class>BookQueryServlet</servlet-class>

 <init-param>

 <param-name>popularAuthor</param-name>

 <param-value>Kelvin Jones</param-value>

 </init-param>

 </servlet>

 <!-- Define servlet's URL mapping -->

 <servlet-mapping>

 <servlet-name>BookQuery</servlet-name>

 <url-pattern>/query</url-pattern>

 </servlet-mapping>

 <session-config>

 <session-timeout>30</session-timeout>

 </session-config>

 <mime-mapping>

286

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

 <extension>pdf</extension>

 <mime-type>application/pdf</mime-type>

 </mime-mapping>

 <!-- For directory request -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 <welcome-file>index.htm</welcome-file>

 </welcome-file-list>

 <error-page>

 <error-code>404</error-code>

 <location>/404.html</location>

 </error-page>

</web-app>

12.2 Syntax for "web.xml"

Servlets 3.0 "web.xml" Syntax

Tomcat 7 and Glassfish 3.1 supports Servlet 3.0.

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="3.0"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

 metadata-complete="true">

</web-app>

Servlets 2.5 "web.xml" Syntax

Tomcat 6 and Glassfish 3 supports Servlets 2.5, JSP 2.1 and JSF 2.0.

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="2.5"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

</web-app>

Servlets 2.4 "web.xml" Syntax

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app version="2.4"

 xmlns="http://java.sun.com/xml/ns/j2ee"

287

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

</web-app>

12.3 Servlet Deployment Descriptor

To deploy a servlet, you need to write one pair of <servlet> and <servlet-mapping> elements,

with a matching (but arbitrary and unique) <servlet-name>. The <servlet-class> specifies the

fully-qualified name of the servlet class. The <url-pattern> specifies the URL. For example,

<web-app ...>

 <servlet>

 <servlet-name>ServletName</servlet-name>

 <servlet-class>mypkg.MyServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>ServletName</servlet-name>

 <url-pattern>/MyURL</url-pattern>

 </servlet-mapping>

</web-app>

The resultant URL is http://hostname:port/WebContext/MyURL.

You can use wildcard '*' in the <url-pattern> for pattern matching. For

example, /MyURL.* (which is matched by /MyURL.html and etc.), /MyURL/* (which is matched

by /MyURL/test, and etc.)

Always use a custom URL for servlet, as you could choose a short and meaningful URL and

include initialisation. parameters, filter, security setting in the deployment descriptor (see the next

section).

12.4 Servlet Initialization Parameters

You can pass initialization parameters in the form of name-value pairs into a particular servlet

from "web.xml". For example,

<web-app ...>

 <servlet>

 <servlet-name>ServletName</servlet-name>

 <servlet-class>mypkg.MyServlet</servlet-class>

 <init-param>

 <param-name>debug</param-name>

 <param-value>false</param-value>

 </init-param>

 <init-param>

 <param-name>listing</param-name>

 <param-value>true</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

288

 <servlet-name>ServletName</servlet-name>

 <url-pattern>/MyURL</url-pattern>

 </servlet-mapping>

</web-app>

Inside the servlet, you can retrieve the init parameters via the ServletConfig object:

package mypkg;

public class MyServlet extends HttpServlet {

 private boolean debug = false, listing = false;

 @Override

 public void init() {

 ServletConfig config = getServletConfig();

 String strDebug = config.getInitParameter("debug");

 if (strDebug.equals("true")) debug = true;

 String strListing = config.getInitParameter("listing");

 if (strListing.equals("true")) listing = true;

 }

}

12.5 Application Initialization Parameters

Specified in webapp's "WEB-INF\web.xml", and available to all the servlets under this webapp.

You can use the getInitParameter() method of ServletContext object to retrieve the init

parameters.

<web-app>

 <context-param>

 <param-name>email</param-name>

 <param-value>query@abcde.com</param-value>

 </context-param>

</web-app>

12.6 Server-wide Initialization Parameters

Similar to application init parameters, but defined in the global

"<CATALINA_HOME>\conf\web.xml".

<context-param>

 <param-name>email</param-name>

 <param-value>query@abcde.com</param-value>

</context-param>

Use the getInitParameter() method of ServletContext object to retrieve the init parameters.

289

12.7 Welcome Page

Specifies the page to be displayed for request to web context root. For example,

<web-app ...>

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-file>

 <welcome-file>test/index.html</welcome-file>

 </welcome-file-list>

</web-app>

13. Servlet 3.0
Servlet API 3.0 introduces these annotations to simplify deployment

in javax.servlet.annotation package:

 @WebServlet: Define a servlet component

 @WebInitParam: Define initialization parameters for a servlet

 @WebListener: Define a listener

 @WebFilter: Define a filter

 @MultipartConfig: For multipart file upload

For example,

@WebServlet(

 name = "HelloServletExample",

 urlPatterns = {"/sayhello"},

 initParams = {

 @WebInitParam(name = "param1", value = "value1"),

 @WebInitParam(name = "param2", value = "value2")}

)

public class HelloServlet extends HttpServlet { }

The above is equivalent to the following configuration in "web.xml" prior to Servlet 3.0. The web

application deployment descriptor "web.xml" has become optional in Servlet 3.0. Instead, the

container at run time will process the annotations of the classes in WEB-INF/classes and JAR

files in lib directory.

// web.xml

<servlet>

 <servlet-name>HelloServletExample</servlet-name>

 <servlet-class>hello.HelloServlet</servlet-class>

 <init-param>

 <param-name>param1</param-name>

 <param-value>value1</param-value>

 </init-param>

 <init-param>

 <param-name>param2</param-name>

 <param-value>value2</param-value>

 </init-param>

290

</servlet>

<servlet-mapping>

 <servlet-name>HelloServletExample</servlet-name>

 <url-pattern>/sayhello</url-pattern>

</servlet-mapping>

13.1 @WebServlet

@WebServlet defines a servlet component and its metadata, with the following attributes:

 String[] urlPatterns: An array of String declaring the url-pattern for servlet-mapping.

Default is an empty array {}.

 String[] value: urlPatterns.

 String name: servlet-name, default is empty string "".

 loadOnStartup: The load-on-startup order of the servlet, default is -1.

 WebInitParam[] initParams: The init parameters of the servlet, default is an empty

array {}.

 boolean asyncSupported: Declares whether the servlet supports asynchronous operation

mode, default is false.

 String smallIcon, String largeIcon, String description: icon and description of the

servlet.

Example:

@WebServlet("/sayHello")

public class Hello1Servlet extends HttpServlet { }

 // One URL pattern

@WebServlet(urlPatterns = {"/sayhello", "/sayhi"})

public class Hello2Servlet extends HttpServlet { }

 // More than one URL patterns

13.2 @WebInitParam

@WebInitParam is Used to declare init params in servlet, with the following attributes:

 String name and String value (required): Declare the name and value of the init

parameter.

 String description (optional) description, default empty string "".

See the above example.

13.3 @WebFilter

@WebFilter defines a filter (which implements javax.servlet.Filter interface).

For example, the following filter log the request time for all the requests (urlPattern="/*").

1

2

3

4

5

6

7

8

package mypkg;

import java.io.*;

import java.util.logging.Logger;

import javax.servlet.*;

import javax.servlet.annotation.*;

import javax.servlet.http.*;

291

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

@WebFilter(urlPatterns={"/*"})

public class RequestTimerFilter implements Filter {

 private static final Logger logger

 = Logger.getLogger(RequestTimerFilter.class.getName());

 @Override

 public void init(FilterConfig config) throws ServletException {

 logger.info("RequestTimerFilter initialized");

 }

 @Override

 public void doFilter(ServletRequest request, ServletResponse response,

 FilterChain chain)

 throws IOException, ServletException {

 long before = System.currentTimeMillis();

 chain.doFilter(request, response);

 long after = System.currentTimeMillis();

 String path = ((HttpServletRequest)request).getRequestURI();

 logger.info(path + ": " + (after - before) + " msec");

 }

 @Override

 public void destroy() {

 logger.info("RequestTimerFilter destroyed");

 }

}

13.4 @WebListener

@WebListener defines a listener (which

extends ServletContexListner, ServletRequestListner or HttpSessionListner). For example,

@WebListener()

public class MyContextListner extends ServletContextListner { }

13.5 @MultipartConfig

For uploading file using multipart/form-data POST Request. Read "Uploading Files in Servlet

3.0".

Unit : 4 JSP(JAVA SERVER PAGES)

Introduction to JSP

Introduction

 It stands for Java Server Pages.
 It is a server side technology.
 It is used for creating web application.

https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletCaseStudyPart2.html#FileUpload
https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServletCaseStudyPart2.html#FileUpload

292

 It is used to create dynamic web content.
 In this JSP tags are used to insert JAVA code into HTML pages.
 It is an advanced version of Servlet Technology.
 It is a Web based technology helps us to create dynamic and platform independent

web pages.
 In this, Java code can be inserted in HTML/ XML pages or both.
 JSP is first converted into servlet by JSP container before processing the client‘s

request.

JSP pages are more advantageous than Servlet:

 They are easy to maintain.
 No recompilation or redeployment is required.
 JSP has access to entire API of JAVA .
 JSP are extended version of Servlet.

Features of JSP

 Coding in JSP is easy :- As it is just adding JAVA code to HTML/XML.
 Reduction in the length of Code :- In JSP we use action tags, custom tags etc.
 Connection to Database is easier :-It is easier to connect website to database and

allows to read or write data easily to the database.
 Make Interactive websites :- In this we can create dynamic web pages which helps

user to interact in real time environment.
 Portable, Powerful, flexible and easy to maintain :- as these are browser and server

independent.
 No Redeployment and No Re-Compilation :- It is dynamic, secure and platform

independent so no need to re-compilation.
 Extension to Servlet :- as it has all features of servlets, implicit objects and custom

tags
JSP syntax

Syntax available in JSP are following

1. Declaration Tag :-It is used to declare variables.

Syntax:-
<%! Dec var %>
Example:-
<%! int var=10; %>

2. Java Scriplets :- It allows us to add any number of JAVA code, variables and
expressions.

 Syntax:-
<% java code %>

3. JSP Expression :- It evaluates and convert the expression to a string.

 Syntax:-
<%= expression %>
 Example:-
<% num1 = num1+num2 %>

4. JAVA Comments :- It contains the text that is added for information which has to be
ignored.

 Syntax:-
<% -- JSP Comments %>

Process of Execution

Steps for Execution of JSP are following:-

 Create html page from where request will be sent to server eg try.html.

293

 To handle to request of user next is to create .jsp file Eg. new.jsp
 Create project folder structure.
 Create XML file eg my.xml.
 Create WAR file.
 Start Tomcat
 Run Application

Example of Hello World
We will make one .html file and .jsp file
demo.jsp
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-
1">
<title>Hello World - JSP tutorial</title>
</head>
<body>
 <%= "Hello World!" %>
</body>
</html>

Advantages of using JSP

 It does not require advanced knowledge of JAVA
 It is capable of handling exceptions
 Easy to use and learn
 It can tags which are easy to use and understand
 Implicit objects are there which reduces the length of code
 It is suitable for both JAVA and non JAVA programmer

Disadvantages of using JSP

 Difficult to debug for errors.
 First time access leads to wastage of time
 It‘s output is HTML which lacks features.

294

 Http protocol is a stateless protocol, that means that it can't persist the data. Http treats

each request as a new request so every time you will send a request you will be

considered as a new user.

In session management whenever a request comes for any resource, a unique token is

generated by the server and transmitted to the client by the response object and stored

on the client machine as a cookie. We can also say that the process of managing the

state of a web based client is through the use of session IDs. Session IDs are used to

uniquely identify a client browser, while the server side processes are used to

associate the session ID with a level of access. Thus, once a client has successfully

authenticated to the web applicatiion, the session ID can be used as a stored

authentication voucher so that the client does not have to retype their login

information with each page request. Now whenever a request goes from this client

again the ID or token will also be passed through the request object so that the server

can understand from where the request is coming.

Session management can be achieved by :

1. Cookies: cookies are small bits of textual information that a web server sends to a

browser and that browsers returns the cookie when it visits the same site again. In

cookie the information is stored in the form of a name, value pair. By default the

cookie is generated. If the user doesn't want to use cookies then it can disable them

browser setting.

2. URL rewriting: In URL rewriting we append some extra information on the end of

each URL that identifies the session. This URL rewriting can be used where a cookie

is disabled. It is a good practice to use URL rewriting. In this session ID information

is embedded in the URL, which is recieved by the application through Http GET

requests when the client clicks on the links embedded with a page.

Exmaple : http://www.techfaq360.com/answers.jsp?sname=test

3. Hidden form fields: In hidden form fields the html entry will be like this : <input

type ="hidden" name ="name" value="">. This means that when you submit the form,

the specified name and value will be get included in get or post method. In this

session ID information would be embedded within the form as a hidden field and

295

submitted with the Http POST method.

4.HttpSessionobject: javax.servlet.http.HttpSession is an interface that provides a way

to identify a user across more than one page request or visit to a web site. This is the

way mainly used in webapplication. HttpSession object maintain session for you. You

don't need to do any sessionmanagement.

session.setAttribute("name",name);

Stringname=session.getAttribute("name");

you will get the same value which you have set.

Maintaining Session Between Web Client And Server

Let us now discuss a few options to maintain the session between the Web Client
and the Web Server −

Cookies

A webserver can assign a unique session ID as a cookie to each web client and for
subsequent requests from the client they can be recognized using the received
cookie.

This may not be an effective way as the browser at times does not support a cookie.
It is not recommended to use this procedure to maintain the sessions.

Hidden Form Fields

A web server can send a hidden HTML form field along with a unique session ID as
follows −

<input type = "hidden" name = "sessionid" value = "12345">

This entry means that, when the form is submitted, the specified name and value
are automatically included in the GET or the POST data. Each time the web
browser sends the request back, the session_id value can be used to keep the
track of different web browsers.

This can be an effective way of keeping track of the session but clicking on a
regular (<A HREF...>) hypertext link does not result in a form submission, so hidden
form fields also cannot support general session tracking.

URL Rewriting

296

You can append some extra data at the end of each URL. This data identifies the
session; the server can associate that session identifier with the data it has stored
about that session.

For example, with http://tutorialspoint.com/file.htm;sessionid=12345, the
session identifier is attached as sessionid = 12345 which can be accessed at the
web server to identify the client.

URL rewriting is a better way to maintain sessions and works for the browsers when
they don't support cookies. The drawback here is that you will have to generate
every URL dynamically to assign a session ID though page is a simple static HTML
page.

The session Object

Apart from the above mentioned options, JSP makes use of the servlet provided
HttpSession Interface. This interface provides a way to identify a user across.

 a one page request or

 visit to a website or

 store information about that user

By default, JSPs have session tracking enabled and a new HttpSession object is
instantiated for each new client automatically. Disabling session tracking requires
explicitly turning it off by setting the page directive session attribute to false as
follows −

<%@ page session = "false" %>

The JSP engine exposes the HttpSession object to the JSP author through the
implicit session object. Since session object is already provided to the JSP
programmer, the programmer can immediately begin storing and retrieving data
from the object without any initialization or getSession().

Here is a summary of important methods available through the session object −

S.No. Method & Description

1
public Object getAttribute(String name)

This method returns the object bound with the specified name in this session, or null if no
object is bound under the name.

2

public Enumeration getAttributeNames()

This method returns an Enumeration of String objects containing the names of all the objects
bound to this session.

3
public long getCreationTime()

This method returns the time when this session was created, measured in milliseconds since

297

midnight January 1, 1970 GMT.

4
public String getId()

This method returns a string containing the unique identifier assigned to this session.

5

public long getLastAccessedTime()

This method returns the last time the client sent a request associated with the this session, as
the number of milliseconds since midnight January 1, 1970 GMT.

6

public int getMaxInactiveInterval()

This method returns the maximum time interval, in seconds, that the servlet container will
keep this session open between client accesses.

7
public void invalidate()

This method invalidates this session and unbinds any objects bound to it.

8

public boolean isNew()

This method returns true if the client does not yet know about the session or if the client
chooses not to join the session.

9
public void removeAttribute(String name)

This method removes the object bound with the specified name from this session.

10
public void setAttribute(String name, Object value)

This method binds an object to this session, using the name specified.

11

public void setMaxInactiveInterval(int interval)

This method specifies the time, in seconds, between client requests before the servlet
container will invalidate this session.

Session Tracking Example

This example describes how to use the HttpSession object to find out the creation
time and the last-accessed time for a session. We would associate a new session
with the request if one does not already exist.

<%@ page import = "java.io.*,java.util.*" %>

<%

 // Get session creation time.

 Date createTime = new Date(session.getCreationTime());

298

 // Get last access time of this Webpage.

 Date lastAccessTime = new Date(session.getLastAccessedTime());

 String title = "Welcome Back to my website";

 Integer visitCount = new Integer(0);

 String visitCountKey = new String("visitCount");

 String userIDKey = new String("userID");

 String userID = new String("ABCD");

 // Check if this is new comer on your Webpage.

 if (session.isNew()){

 title = "Welcome to my website";

 session.setAttribute(userIDKey, userID);

 session.setAttribute(visitCountKey, visitCount);

 }

 visitCount = (Integer)session.getAttribute(visitCountKey);

 visitCount = visitCount + 1;

 userID = (String)session.getAttribute(userIDKey);

 session.setAttribute(visitCountKey, visitCount);

%>

<html>

 <head>

 <title>Session Tracking</title>

 </head>

 <body>

 <center>

 <h1>Session Tracking</h1>

 </center>

 <table border = "1" align = "center">

 <tr bgcolor = "#949494">

 <th>Session info</th>

 <th>Value</th>

 </tr>

 <tr>

 <td>id</td>

 <td><% out.print(session.getId()); %></td>

 </tr>

 <tr>

 <td>Creation Time</td>

 <td><% out.print(createTime); %></td>

 </tr>

 <tr>

 <td>Time of Last Access</td>

 <td><% out.print(lastAccessTime); %></td>

 </tr>

 <tr>

 <td>User ID</td>

 <td><% out.print(userID); %></td>

 </tr>

299

 <tr>

 <td>Number of visits</td>

 <td><% out.print(visitCount); %></td>

 </tr>

 </table>

 </body>

</html>

Now put the above code in main.jsp and try to
access http://localhost:8080/main.jsp. Once you run the URL, you will receive the
following result −

Welcome to my website

Session Information

Session info value

id 0AE3EC93FF44E3C525B4351B77ABB2D5

Creation Time Tue Jun 08 17:26:40 GMT+04:00 2010

Time of Last Access Tue Jun 08 17:26:40 GMT+04:00 2010

User ID ABCD

Number of visits 0

Now try to run the same JSP for the second time, you will receive the following
result.

Welcome Back to my website

Session Information

info type value

id 0AE3EC93FF44E3C525B4351B77ABB2D5

Creation Time Tue Jun 08 17:26:40 GMT+04:00 2010

300

Time of Last Access Tue Jun 08 17:26:40 GMT+04:00 2010

User ID ABCD

Number of visits 1

Deleting Session Data

When you are done with a user's session data, you have several options −

 Remove a particular attribute − You can call the public void removeAttribute(String
name) method to delete the value associated with the a particular key.

 Delete the whole session − You can call the public void invalidate() method to
discard an entire session.

 Setting Session timeout − You can call the public void setMaxInactiveInterval(int
interval) method to set the timeout for a session individually.

 Log the user out − The servers that support servlets 2.4, you can call logout to log the
client out of the Web server and invalidate all sessions belonging to all the users.

 web.xml Configuration − If you are using Tomcat, apart from the above mentioned
methods, you can configure the session time out in web.xml file as follows.

<session-config>

 <session-timeout>15</session-timeout>

</session-config>

The timeout is expressed as minutes, and overrides the default timeout which is 30
minutes in Tomcat.

The getMaxInactiveInterval() method in a servlet returns the timeout period for
that session in seconds. So if your session is configured in web.xml for 15
minutes, getMaxInactiveInterval() returns 900.

